Production of Doubly Charged Higgs Bosons at the LHC

Andrew Akeroyd

NExT Institute, SHEP, University of Southampton

- Higgs Triplet Model (HTM) and doubly charged scalars $(H^{\pm\pm})$
- Leptonic decay channels $H^{\pm\pm} \rightarrow \ell^{\pm} \ell^{\pm}$
- Heavy SM-like Higgs boson in HTM with $M_{H_2}>2M_{H^{\pm\pm}}$
- Gluon-gluon fusion $gg \rightarrow H_2$ with decay $H_2 \rightarrow H^{++}H^{--}$
- Impact on ongoing search for $q\overline{q} \rightarrow \gamma^*, Z^* \rightarrow H^{++}H^{--}$ at the LHC

AGA and S. Moretti, arXiv:1106.3427 [hep-ph]

Talk at NExT PhD meeting, Abingdon, 19 July 2011

The Higgs boson (1964) of the Standard Model is a spinless,

neutral particle with a vacuum expectation value.

Still undiscovered If exists, how many Higgs bosons?

Classify Higgs bosons by their electric charge

- Neutral: h^0 (SM 1967), H^0 , A^0 (2HDM 1973, MSSM 1980...)
- Singly Charged: H^{\pm} (2HDM, MSSM..)
- Doubly Charged: $H^{\pm\pm}$ (this talk)

These three types have received considerable theoretical/experimental attention

(Order of priority: neutral > singly charged > doubly charged)

Models with Doubly Charged Higgs Bosons, $H^{\pm\pm}$

Motivation \rightarrow neutrino mass generation

Scalar triplets (isospin I = 1) and scalar singlets (I = 0)

- Higgs Triplet Model : I = 1, Y = 2 (tree-level mass for ν)
- LR Symmetric Model : I = 1, Y = 2 (tree-level mass for ν)
- Zee-Babu Model: I = 0, Y = 4 (radiative mass for ν)

All of these models are in textbooks ("classic models")

I will discuss the Higgs Triplet Model

Konetschny/Kummer 77, Schechter/Valle 80, Cheng/Li 80

Higgs Triplet Model (HTM)

SM Lagrangian with one $SU(2)_L$ I = 1, Y = 2 Higgs triplet

$$\Delta = \begin{pmatrix} \delta^+ / \sqrt{2} & \delta^{++} \\ \delta^0 & -\delta^+ / \sqrt{2} \end{pmatrix}$$

Higgs potential invariant under $SU(2)_L \otimes U(1)_Y$: $m^2 < 0$, $M^2_\Delta > 0$

$$V = m^{2}(\Phi^{\dagger}\Phi) + \lambda_{1}(\Phi^{\dagger}\Phi)^{2} + M_{\Delta}^{2}\mathrm{Tr}(\Delta^{\dagger}\Delta)$$

$$+\lambda_i (\text{quartic terms}) + \frac{1}{\sqrt{2}} \mu (\Phi^T i \tau_2 \Delta^{\dagger} \Phi) + h.c$$

Triplet vacuum expectation value: $|<\delta^0>=v_{\Delta}\sim \mu v^2/M_{\Delta}^2$

 $(v_{\Delta} < 5 \text{ GeV to keep }
ho = (M_Z^2 \cos^2 heta_W)/M_W^2 \sim 1)$

Neutrino mass in Higgs Triplet Model (HTM)

No additional (heavy) neutrinos: $\mathcal{L} = h_{ij}\psi_{iL}^T Ci\tau_2 \Delta \psi_{jL} + h.c$ $\psi_{iL}^T = (\nu_i, \ell_i); i = e, \mu, \tau$

Neutrino mass from triplet-lepton-lepton coupling (h_{ij}) :

$$h_{ij}\left[\sqrt{2}\,\bar{\ell}_i^c P_L \ell_j \delta^{++} + (\bar{\ell}_i^c P_L \nu_j + \bar{\ell}_j^c P_L \nu_i)\delta^{+} - \sqrt{2}\,\bar{\nu}_i^c P_L \nu_j \delta^{0}\right] + h.c$$

Light neutrinos receive a Majorana mass: $\mathcal{M}_{ij}^{
u} \sim v_{\Delta} h_{ij}$

$$h_{ij} = \frac{1}{\sqrt{2}v_{\Delta}} V_{\text{PMNS}} diag(m_1, m_2, m_3) V_{\text{PMNS}}^T$$

(m_i =neutrino masses; $V_{\text{PMNS}} = V_{\ell}^{\dagger} V_{\nu}$; take $V_{\ell} = I$ and $V_{\nu} = V_{\text{PMNS}}$)

Decay channels for $H^{\pm\pm}$ and H^{\pm}

$\mathsf{BR}(H^{\pm\pm} \to W^{\pm}W^{\pm})$ and $\sum_{i,j=1}^{3} \mathsf{BR}(H^{\pm\pm} \to \ell_i^{\pm}\ell_j^{\pm})$ against triplet vev Han 07, Asaka/Hikasa 94

Production of $H^{\pm\pm}$ at Hadron Colliders

LEP (1989 \rightarrow 2000) searched for $e^+e^- \rightarrow H^{++}H^{--}$

• First searches at a hadron collider in 2003 Tevatron: CDF,D0

$$\mathcal{L} = i \left[\left(\partial^{\mu} H^{--} \right) H^{++} \right] \left(g W_{3\mu} + g' B_{\mu} \right) + h.c$$

• $\sigma_{H^{++}H^{--}}$ is a simple function of $M_{H^{\pm\pm}}$ Barger 82, Gunion 89, Raidal 96

Tevatron search (D0, 2007) for $p\overline{p} \rightarrow H^{++}H^{--}$, $H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}$

Mass limit $M_{H^{\pm\pm}} > 150$ GeV for BR $(H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}) = 100\%$ (updated $M_{H^{\pm\pm}} > 168$ GeV, 1106.4250[hep-ex])

First search for $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ at LHC!

CMS collaboration with $\mathcal{L} = 36 \text{ pb}^{-1}$ CMS-PAS-HIG-11-001

- Presented at Moriond 2011 with other first Higgs searches
- Assumes production via $q\overline{q} \rightarrow \gamma^*, Z^* \rightarrow H^{++}H^{--}$
- Includes $q'\overline{q} \to W^* \to H^{\pm\pm}H^{\mp}$ for the first time
- Searches for 3ℓ ($\ell^{\pm}\ell^{\pm}\ell^{\mp}$) and 4ℓ ($\ell^{+}\ell^{+}\ell^{-}\ell^{-}$) signatures
- Backgrounds are smallest for 4ℓ signature
- It is assumed that only $q\overline{q} \to \gamma^*, Z^* \to H^{++}H^{--}$ can give 4ℓ

Summary of LHC and Tevatron limits on $M_{H^{\pm\pm}}$

	ee	$e\mu$	$\mu\mu$	e au	μau	au au
Tevatron	> 133 GeV	> 113 GeV	> 168 GeV	> 112 GeV	>144 GeV	> 128 GeV
CMS	> 144 GeV	> 154 GeV	> 156 GeV	> 106 GeV	> 106 GeV	> 80 GeV

	ee	$e\mu$	$\mu\mu$	e au	μau	au au
Tevatron	0.24 fb ⁻¹	0.24 fb ⁻¹	7 fb ⁻¹	0.35 fb ⁻¹	7 fb ⁻¹	7 fb ⁻¹
CMS	0.036 fb ⁻¹	0.036 fb^{-1}				

- All limits assume $BR(H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}) = 100\%$
- Number of $H^{\pm\pm}$ signal events scales as $[BR(H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm})]^2$
- Limits on $M_{H^{\pm\pm}}$ weakened for ${\sf BR}(H^{\pm\pm} \to \ell^\pm \ell^\pm) \ll 100\%$

Any other pair-production mechanisms for $H^{++}H^{--}$ at LHC?

Heavy (> 200 GeV) SM-like Higgs with $M_{H_2} > 2M_{H^{\pm\pm}}$

- In HTM, H_2 is mainly composed of isospin doublet scalar
- \rightarrow "SM-like Higgs" (now being searched for at LHC)
- Phenomenology of H_2 can differ from that of SM Higgs

if $M_{H_2}>2M_{H^{\pm\pm}}$

- The decay $H_2 \rightarrow H^{++}H^{--}$ would be open kinematically
- $M_{H_2} > 200 \text{ GeV}$ necessary since $M_{H^{\pm\pm}} > 100 \text{ GeV}$ from LEP limits
- $M_{H_2} > 200 \text{ GeV}$ in HTM can be made compatible with electroweak precision measurements (which suggest $M_{H_2} < 200 \text{ GeV}$ in SM).

The decay $H_2 \rightarrow H^{++}H^{--}$

- Coupling $C_{H_2H^++H^{--}} = \lambda_1 v$ (from $\lambda_1(H^{\dagger}H) \operatorname{Tr}\Delta^{\dagger}\Delta$, and v = 246 GeV)
- $\Gamma(H_2 \to H^{++}H^{--}) \sim (\lambda_1 v)^2$
- Competing decays $\Gamma(H_2 \rightarrow WW, ZZ) \sim M_{H_2}^3$
- BR $(H_2 \rightarrow H^{++}H^{--})$ will be maximised for:
- i) Larger λ_1 and ii) $M_{H_2} = 2M_{H^{\pm\pm}} + \epsilon$
- $H_2 \rightarrow H^+H^-, H^0H^0, A^0A^0$ could also be open
- \bullet Mass splitting among $M_{H^{\pm\pm}}, M_{H^{\pm}}, M_{H^0,A^0}$ determined by λ_4
- We consider $\lambda_4 > 0$, for which $M_{H^{\pm\pm}} < M_{H^{\pm}} < M_{H^0,A^0}$

Branching ratios of H_2 as a function of M_{H_2} and λ_1 for $M_{H^{\pm\pm}} = 150$ GeV

Left panel: Various BRs of H_2 Right panel: Conte

Right panel: Contours of $BR(H_2 \rightarrow H^{++}H^{--})$

Gluon-gluon fusion $gg \rightarrow H_2$ with decay $H_2 \rightarrow H^{++}H^{--}$

The dominant production mechanism for H_2 at the LHC

is
$$gg \to H_2$$

We introduce the ratio R, defined by:

$$R = \frac{\sigma(gg \to H_2) \times \mathsf{BR}(H_2 \to H^{++}H^{--})}{\sigma(q\overline{q} \to \gamma^*, Z^* \to H^{++}H^{--})}$$

- Numerator is a novel mechanism (requires $BR(H_2 \rightarrow H^{++}H^{--}) \neq 0$)
- Denominator is conventional mechanism (used in ongoing searches)
- $\bullet~R$ is determined by $M_{H^{\pm\pm}}\text{, }M_{H_2}$ and λ_1

$R = \sigma(gg \to H_2) \times BR(H_2 \to H^{++}H^{--})/\sigma(q\overline{q} \to H^{++}H^{--})$ as a function of M_{H_2} for $\lambda_1 = 1, 4$

Left panel: LHC with $\sqrt{s} = 14$ TeV Right panel: LHC with $\sqrt{s} = 7$ TeV

Number of $H^{++}H^{--}$ events at the LHC

 $gg \to H_2$ with decay $H_2 \to H^{++}H^{--}$ can contribute significantly to number of $H^{++}H^{--}$ events in a sizeable parameter space of $[\lambda_1, M_{H_2}]$ (with $M_{H_2} > 2M_{H^{\pm\pm}}$):

 $N_{H^{\pm\pm}} = \epsilon \times \mathcal{L} \times [\sigma(q\overline{q} \to \gamma^*, Z^* \to H^{++}H^{--}) + \sigma(gg \to H_2) \times \mathsf{BR}(H_2 \to H^{++}H^{--})]$

- ϵ is detection efficiency (after all selection cuts are imposed)
- ϵ is different for each decay channel $H^{\pm\pm} \rightarrow \ell_i^{\pm} \ell_i^{\pm}$
- $\epsilon_{\mu\mu} \sim 0.5$ for $M_{H^{\pm\pm}} = 150$ GeV (similar for $\epsilon_{e\mu}, \epsilon_{ee}$)
- $\epsilon_{\mu\tau} \sim \epsilon_{e\tau} \sim 0.02$, $\epsilon_{\tau\tau} << 0.01$

Number of $H^{++}H^{--}$ events with $BR(H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}) = 100\%$ at the LHC

Left panel: $\sqrt{s} = 14$ TeV, $\mathcal{L} = 30$ fb⁻¹ Right panel: $\sqrt{s} = 7$ TeV, $\mathcal{L} = 1$ fb⁻¹

Conclusions

- $H^{\pm\pm}$ is being searched for at the Tevatron and LHC
- $q\overline{q} \rightarrow \gamma^*, Z^* \rightarrow H^{++}H^{--}$ gives 4ℓ $(\ell^+\ell^+\ell^-\ell^-)$ signature
- If $M_{H_2} > 2M_{H^{\pm\pm}}$, $\mathsf{BR}(H_2 \to H^{++}H^{--})$ can be > 10%
- $R = \sigma(gg \rightarrow H_2) \times BR(H_2 \rightarrow H^{++}H^{--}) / \sigma(q\overline{q} \rightarrow H^{++}H^{--}) > 1 \text{ (max } \sim 18)$
- Would enable smaller values of ${\rm BR}(H^{\pm\pm}\to\ell^\pm\ell^\pm)$ to be probed for a given $M_{H^{\pm\pm}}$
- Scenario of $M_{H_2} > 2M_{H^{\pm\pm}}$ will be tested in $\sqrt{s} = 7$ TeV run of LHC via $H_2 \rightarrow H^{++}H^{--}$, $H_2 \rightarrow WW$ and $H_2 \rightarrow ZZ$

Strategy of most recent search by Tevatron

- $H^{\pm\pm}$ decays via h_{ij} to same charge $ee, \mu\mu, \tau\tau, e\mu, e\tau, \mu\tau$
- Four leptons $(\ell^+\ell^+\ell^-\ell^-)$ from pair production of $H^{++}H^{--}$
- For $H^{\pm\pm} \to e^{\pm}e^{\pm}, e^{\pm}\mu^{\pm}, \mu^{\pm}\mu^{\pm}$, sufficient to search for

three leptons of high momentum with two leptons

- having the same charge
- \rightarrow Six distinct signatures

 $e^{\pm}e^{\pm}e^{\mp}$, $e^{\pm}e^{\pm}\mu^{\mp}$, $e^{\pm}\mu^{\pm}e^{\mp}$, $e^{\pm}\mu^{\pm}\mu^{\mp}$, $\mu^{\pm}\mu^{\pm}e^{\mp}$ and $\mu^{\pm}\mu^{\pm}\mu^{\mp}$

- Only $\mu^{\pm}\mu^{\pm}\mu^{\mp}$ has been searched for (1.1 fb⁻¹ of data)
- Tevatron currently has 7 fb $^{-1}$, and expects 9 \rightarrow 12 fb $^{-1}$

Tevatron search (D0, 2007) for $p\overline{p} \rightarrow H^{++}H^{--}$, $H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}$

Selection	Preselection	Isolation	$\Delta \phi < 2.5$	Like sign	Third muon
	S1	S 2	S 3	S4	S 5
$Z/\gamma^* \to \mu^+\mu^-$	69181 ± 4642	58264 ± 3910	4936 ± 333	5.3 ± 1.6	< 0.01
Multijet	4492 ± 120	194 ± 18	18 ± 2	6.3 ± 0.8	0.2 ± 0.1
$Z/\gamma^* \to \tau^+ \tau^-$	328 ± 25	269 ± 21	20 ± 3	< 0.01	< 0.01
$t\overline{t}$	38 ± 3	20 ± 1	14 ± 1	0.03 ± 0.01	< 0.01
WW	40 ± 3	34 ± 2	20 ± 1	< 0.01	< 0.01
WZ	19 ± 1	16 ± 1	11 ± 1	2.95 ± 0.20	1.62 ± 0.11
ZZ	10 ± 1	9 ± 1	5 ± 1	0.63 ± 0.05	0.47 ± 0.03
Total background	74108 ± 4644	58806 ± 3910	5024 ± 333	15.2 ± 1.8	2.3 ± 0.2
$M_{H^{\pm\pm}}=$ 140 GeV	20.5 ± 2.7	18.5 ± 2.4	16.3 ± 2.1	11.6 ± 1.5	10.1 ± 1.3
Data	72974	58763	4558	16	3

Signal is defined as $\mu^+\mu^+\mu^-$ or $\mu^-\mu^-\mu^+$