University of Sussex

Quantum Black Holes

Nina Gausmann

in collaboration with X. Calmet and D. Fragkakis arXiv:1105.1779v1 [hep-ph]

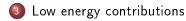
> Theoretical Particle Physics University of Sussex

NExT Workshop, July 2011

Outline

Semi-classical black holes and quantum black holes

- 2 Effective operators
 - Effective Field Theory (EFT)
 - Lagrangian
 - Matching of cross sections



(4 回) (ヨ) (ヨ)

Semi-classical black holes and quantum black holes

Model of low scale quantum gravity: Formation of small black holes (BH) at particle colliders

Semi-classical BH

- thermal object
- decay via Hawking radiation into many particle final state
- geometrical cross section:

$$\sigma = \pi r_s^2$$

• formation unlikely since $M_{\rm BH} \gg M_{\rm P}$

QBH

- non-thermal object
- decay into only a few particles
- cross section from semi-classical case
- interpretation as short-lived state

イロト イポト イヨト イヨト

Effective Operators for QBHs

How to model these states in particle physics processes? \rightarrow suitable Effective Field Theory

QBH

- e.g. spinless QBH is represented by scalar field
- charges in accordance with gauge quantum numbers of Standard Model

Interaction

- defined by EFT
- matching of cross section with geometrical one
- conservation of gauge symmetries
- no equal assumption for global symmetries

・ロト ・ 一 ト ・ ヨト ・ ヨト

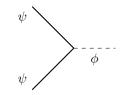
Effective Field Theory (EFT) Lagrangian Matching of cross sections

Effective Operators for QBHs

Lagrangian

$$\mathcal{L}_6 = rac{c}{ar{M}_P^2} \Box \phi ar{\psi} \psi + h.c.$$

- mass dimension 6 suitable for 4-dimensional cross section
- ϕ : neutral scalar field \rightarrow QBH
- ψ : fermion field
- c: adjustable parameter to match cross section, depending on CoM energy and relevant masses



イロト イポト イヨト イヨト

Effective Field Theory (EFT) Lagrangian Matching of cross sections

Matching of cross sections

Cross section for production of scalar field

$$\sigma (2\psi \to \phi) = \frac{\pi}{s} |\mathcal{A}|^2 \, \delta(s - M_{BH}^2)$$

amplitude:
$$|\mathcal{A}\left(2\psi
ightarrow \phi
ight)|^2 = s^2 rac{c^2}{ar{M}_P^4} \left[s - \left(m_1 + m_2
ight)^2
ight]$$

Geometrical cross section

$$\sigma \sim \pi r_s^2 \quad , \quad 4d : r_s = \frac{\sqrt{s}}{4\pi \bar{M}_P^2}$$

thus: $c^2 = \frac{1}{16\pi \left[s - (m_1 + m_2)^2\right]} \frac{\left[\left(s - M_{BH}^2\right)^2 + M_{BH}^2\Gamma^2\right]}{M_{BH}\Gamma}$

Nina Gausmann

Quantum Black Holes

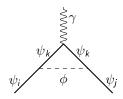
・ロト ・ 同ト ・ ヨト ・

⇒ →

Low energy contributions

Effective Lagrangian

$$L_{eff} = \frac{e}{32\pi^2} \sum_{ij} \frac{m_i}{\bar{M}_P^2} \bar{\psi}_i \left(A_{ij} + B_{ij} \gamma_5 \right) \sigma_{\mu\nu} \psi_j F^{\mu\nu}$$



- anomalous magnetic moment (e.g. of μ : $\bar{M}_P > 266 \text{ GeV}$)
- ② "forbidden" lepton flavor violating processes (e.g. $\mu \rightarrow e\gamma$: $\bar{M}_P > 3 \times 10^4$ GeV)

・ロト ・同ト ・ヨト ・

University of Sussex

• electric dipole moment (e.g. neutron: $\bar{M}_P > 5 \times 10^3 \, {\rm GeV})$

Thanks

Thanks for your attention!

æ

・ロト ・部ト ・ヨト ・ヨト

Nina Gausmann Quantum Black Holes