# Consistent Minimal Universal Extra Dimensions at the LHC

Matthew Brown<sup>1</sup>

Supervisor: Dr. Alexander Belyaev<sup>1</sup> Working with Dr. Jesús Moreno<sup>2</sup> and Dr. Chloé Papineau<sup>2</sup>

<sup>1</sup>University of Southampton

<sup>2</sup>Universidad Autonoma de Madrid

NExT PhD workshop, 18th July 2011







- 3 Radiative corrections
- Our implementation

#### **5** Conclusions

# LanHEP and CalcHEP

#### CalcHEP

Pukhov, Belyaev, Christensen

(http://theory.sinp.msu.ru/~pukhov/calchep.html)

- Automatically calculates decays widths, cross-sections and differential distributions
- Interfaces easily with event generators such as PYTHIA
- Produces output suitable for micrOMEGAS for dark matter calculations

#### LanHEP

Semenov, 2008 (arXiv:0805.0555, [hep-ph])

- Input is the model Lagrangian
- Produces Feynman rules in CalcHEP or FeynArts format
- Allows user to write in terms of 5D fields
- Support for Bessel functions (e.g. RS models) coming soon!

## Status of other MUED implementations

Datta, Kong and Matchev, 2005 (arXiv:1002.4624 [hep-ph])

- Matchev's model is directly implemented in CalcHEP
- Only unitary gauge
- No EWSB for KK modes
- Bulk radiative corrections to masses may break gauge invariance
- Four-gluon vertices not implemented correctly

There is a parallel group in Annecy (Bélanger, Mitsuru, Pukhov and Semenov) working on their own LanHEP implementation. We are cross-checking our model with theirs

# What is (Minimal) UED?

Appelquist, 2001 [arXiv:hep-ph/0012100]

• In MUED, there is one extra dimension compactified on an  $S^1/\mathbb{Z}_2$  orbifold: a line segment of length  $\pi R$ 



- Locally we have 5D Poincaré invariance and so there is a conserved momentum *p*<sub>5</sub>, discretized to KK number *n*
- 5D Poincaré invariance is broken non-locally (i.e. in loops) but KK parity = (-1)<sup>n</sup> is conserved in MUED
- The lightest KK particle is a stable WIMP

#### Radiative corrections Why do we bother?

At tree level, a particle's nth KK level mass is given by

$$m_n = \frac{n}{R} + m \text{ (fermions)}; \quad m_n = \sqrt{\left(\frac{n}{R}\right)^2 + m^2} \text{ (bosons)}$$

$$e^{(1)}$$

$$e^{(1)}$$

$$e^{\left(\frac{1}{R} + m_e\right)} + m_e + \sqrt{\frac{1}{R^2}}$$

The n = 1 electron is <u>stable</u>  $\Rightarrow$  Charged dark matter!

#### Radiative corrections Bulk and orbifold corrections

Radiative corrections in 5D can be categorised as either bulk or brane corrections Cheng, Matchev, Konstantin and Schmaltz, 2002 [arxiv:hep-ph/0204342]

#### Bulk corrections



The two particles in a loop each pass through one of the boundary points

$$\delta m_n = A \frac{1}{R^2}$$

#### Orbifold corrections

Only one of the particles passes through a boundary point

$$\delta m_n = B \frac{n}{R} \ln \frac{\Lambda^2}{\mu^2} \text{ (fermions)}$$
  
$$\delta m_n^2 = B \frac{n^2}{R^2} \ln \frac{\Lambda^2}{\mu^2} \text{ (bosons)}$$

#### Radiative corrections Orbifold corrections

• At one-loop, the self energy of a 5D electron leads to the running of terms localised on orbifold boundaries

$$\delta \bar{\mathcal{L}} \supset \left(\frac{\delta(\mathbf{y}) + \delta(\mathbf{y} - \pi R)}{2}\right) \frac{Rg^2}{64\pi} \ln \frac{\Lambda^2}{\mu^2} \\ \times \left[\bar{\psi}_R \mathrm{i} \partial \!\!\!/ \psi_R + 5(\partial_5 \bar{\psi}_L) \psi_R + 5 \bar{\psi}_R(\partial_5 \psi_L)\right]$$

• KK expanding leads to corrections to kinetic and mass terms:

$$\bar{\mathcal{L}}_4 \supset \bar{\psi}_L^{(n)} \mathrm{i} \partial \psi_L^{(n)} + Z_{nR} \bar{\psi}_R^{(n)} \mathrm{i} \partial \psi_R^{(n)} + Z_{n5} \frac{n}{R} \bar{\psi}^{(n)} \psi^{(n)}.$$

 The expansion also leads to a small mixing between KK modes which we neglect.

#### Implementing the mass corrections Field strength renormalisation

• Can't add boundary terms in LanHEP. Instead, add gauge invariant but Lorentz-violating wavefunction renormalisation to the 5D Lagrangian, e.g.

$$\partial_M \phi \partial^M \phi = \partial_\mu \phi \partial^\mu \phi - \partial_5 \phi \partial_5 \phi \rightarrow \overline{(\partial_\mu \phi)^2 - Z(\partial_5 \phi)^2}$$

• Upon compactification, 5D kinetic terms lead to mass terms for each KK mode

$$m_n + \delta m_n = Z \frac{n}{R}$$
 (fermions);  $m_n^2 + \delta m_n^2 = Z \left(\frac{n}{R}\right)^2$  (bosons)

#### Implementing the mass corrections Problems with gauge invariance

• The brane corrections can be incorporated naturally in this fashion, e.g. for bosons:

$$\delta m_n^2 = B \frac{n^2}{R^2} \ln \frac{\Lambda^2}{\mu^2} \quad \Rightarrow \quad Z = 1 + B \ln \frac{\Lambda^2}{\mu^2}$$

• But if we include bulk corrections too, this would require Z to be KK-dependent, which is inconsistent:

$$Z = 1 + B \ln \frac{\Lambda^2}{\mu^2} + \frac{A}{n^2}$$

 Moreover, just including these corrections by hand – mode-by-mode at the 4D level – may break gauge invariance for non-Abelian groups

## Electroweak symmetry breaking

- Particles get EW and KK contributions to their masses
- For n > 0, the mass mixing angles are different from in the Standard Model: they depend on Z and n
- Consider the mass matrix for  $W^{3(n)}$  and  $B^{(n)}$ :

$$\begin{pmatrix} Z_B \left(\frac{n}{R}\right)^2 + \frac{1}{4}g_1^2 v^2 & -\frac{1}{4}g_1g_2 v^2 \\ -\frac{1}{4}g_ag_2 v^2 & Z_W \left(\frac{n}{R}\right)^2 + \frac{1}{4}g_2^2 v^2 \end{pmatrix}$$

- So  $W^{3(n)}$  and  $B^{(n)}$  mixing does not give exactly  $\gamma^{(n)}$  and  $Z^{(n)}$ . We call the mass eigenstates  $P^{(n)}$  and  $V^{(n)}$
- This mixing leads to vertices such as P<sup>(n)</sup>P<sup>(m)</sup>H<sup>(l)</sup>, which do not appear in Matchev's implementation

## First results from our implementation



Matthew Brown - m.s.brown@soton.ac.uk

MUED at the LHC

# Plans for investigating phenomenology

• Multi-lepton final states are likely to be good signatures



• Higgs phenomenology is also very interesting: we are looking at  $G, G \to H^{(0,n)}$  and  $H^{(0,n)} \to \gamma, \gamma$  through loop diagrams with Annecy group



## Conclusions

#### Summary

- MUED is implemented in unitary and Feynman gauges
- Four-gluon vertex splitting is implemented correctly
- Gauge invariance-violating bulk mass corrections left out
- EWSB is implemented consistently
- The problem of gauge invariance is an open question

#### Outlook

- Plan to systematically investigate phenomenology that will be of great interest at the LHC
- Will include KK-number violating vertices which are important for collider phenomenology as well as dark matter studies

## Parameters and bounds

The extra dimension must be smaller than in ADD in order not to contradict existing experiments because all particles propagate in it<sup>1</sup>:

- $R < 10^{-19}$  m ( $R^{-1} > 400$  GeV) EW precision data
- $R > 10^{-20}$  m ( $R^{-1} < 1400$  GeV) leads to too much dark matter

The cutoff has to be  $\Lambda \lesssim 20 R^{-1}$  for the theory to remain perturbative

<sup>1</sup>Kakizaki, Matsumoto and Senami, 2006 [arXiv:hep-ph/0605280v1] Matthew Brown - m.s.brown@soton.ac.uk MUED at the LHC

## Gluon splitting

Consider the SM gluon kinetic term  $-\frac{1}{4}G^{a}_{\mu\nu}G^{a\,\mu\nu}$ . It contains

$${\cal L} \; = - rac{1}{4} g_3^2 f^{abc} f^{ade} G^b_\mu G^c_
u G^{\mu\, d} G^{\mu\, e}$$

The trick is to replace this by



In the case of MUED at one-loop with two KK modes, the 5D Lagrangian is

$$\mathcal{L}_{5} = -\frac{1}{4}g_{3}^{(5)\,2}f^{abc}f^{ade}G_{\mu}^{b}G_{\nu}^{c}G^{\mu\,d}G^{\nu\,e} + \frac{Z_{G}}{2}g_{3}^{(5)\,2}f^{abc}f^{ade}G_{\mu}^{b}G_{5}^{c}G^{\mu\,d}G_{5}^{e}$$

Need 5 tensors to split the 1st term and 4 vectors to split the 2nd.