# Signal-background interference in $gg \rightarrow H \rightarrow VV$

Nikolas Kauer Royal Holloway, University of London University of Southampton

in collaboration with Abdel Djouadi and Michael Krämer

First NExT PhD Workshop The Cosener's House, Abingdon, UK July 20, 2011





# Outline

- SM Higgs  $\rightarrow VV$  search at the LHC
- Gluon-induced VV background
- Signal-background interference
- Intermediate Higgs mass range
- Heavy Higgs
- Conclusion

# Higgs boson production and decay at the LHC









 $H 
ightarrow b ar{b}$  for  $M_H <$  135 GeV

 $H \rightarrow WW, ZZ$  for  $M_H > 135 \text{ GeV}$ 

イロト イボト イヨト イヨト

source: Tevatron-for-LHC Higgs Report (2007), Djouadi (2005)

# LHC discovery potential for the SM Higgs boson



Tevatron:  $M_H \notin [158, 175]$  GeV

# Discoveries at the LHC Discovery convention



S = nr. of signal events, B = nr. of background events, Observation significance:  $\sigma = S/\sqrt{B+S}$ 

Discovery if  $\sigma \geq 5 \rightarrow P(\text{background fluctuation}) \leq 2.85 \times 10^{-7}$ 

Discoveries require the accurate determination of rates and uncertainties for signals and backgrounds

The experimentally ideal case: a new, reconstructible mass peak



 $p_1, p_2, p_3, p_4$  measurable  $\rightarrow p_R = p_1 + p_2 + p_3 + p_4$ 

- $\rightarrow$  invariant mass distribution from experimental data ( $\rightarrow$  resonance mass and width)
- $\rightarrow$  background via sideband interpolation ( $\rightarrow$  signal)

but: neutrinos and dark matter candidates not detectable at the LHC

# Gluon-induced WW and ZZ backgrounds to Higgs searches $pp \rightarrow WW/ZZ \rightarrow \ell, \nu \text{ at } \mathcal{O}(\alpha_s^2)$

Why partial NNLO calculation? New subprocess  $gg \rightarrow WW/ZZ!$ 

enhanced by

- large gluon-gluon flux at the LHC
- experimental selection cuts: boost of VV system only in qq̄ scattering



#### Binoth, Ciccolini, Kauer, Krämer, JHEP 0503 (2005) 065, JHEP 12 (2006) 046

14-dim. integration, amplitude representation  $\sim$  100000 terms, quadruple precision

## GG2WW event generator tool → used by several ATLAS and CMS groups Drollinger, Binoth, Ciccolini, Dührssen, Kauer, CERN-CMS-NOTE-2005-024, Mellado, Quayle, Wu, Les Houches Physics at TeV Colliders 2005 Proceedings, Davatz, Dittmar, Giolo-Nicollerat, CERN-CMS-NOTE-2006-047, Giolo-Nicollerat, CERN-CMS-CR-2006-038

## WW background



 $\begin{array}{l} \mbox{Higgs search cuts = standard cuts (left) and $\Delta\phi_{T,\ell\ell} < 45^\circ$, $m_{\ell\ell} < 35$ GeV, jet veto: $p_{Tj} > 20$ GeV and $|\eta_j| < 3$, $35$ GeV < $p_{T\ell,max} < 50$ GeV, $25$ GeV < $p_{T\ell,min}$ Davatz, Dissertori, Dittmar, Grazzini, Pauss, JHEP 0405 (2004) 009 $} \end{array}$ 

## ZZ background

 $gg \to Z(\gamma^*)Z(\gamma^*) \to \ell \bar{\ell} \ell' \bar{\ell}' \to +$  15% correction to NLO

Binoth, Kauer, Mertsch, DIS 2008 and Les Houches Physics at TeV Colliders 2007 Proceedings

#### GG2ZZ event generator tool ightarrow used by several ATLAS and CMS groups

Mellado, Mir, Wu; Rebuzzi ( ATLAS Book); Rosati, Solfaroli (ATLAS), Giordano, Nikitenko (CMS)

## $gg \rightarrow VV$ signal-background interference

representative Feynman graphs (V = W):





signal (sig) amplitude

continuum (cont) amplitude

## Signal-background interference for $M_H = 140, 170, 200 \text{ GeV}$

|                                                                                                                                              | $\sigma[gg(\to H) \to WW \to \ell \bar{\nu} \bar{\ell'} \nu'] \text{ [fb]}$ |           |           |                   |           |           |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------|-----------|-------------------|-----------|-----------|
| Selection                                                                                                                                    | no cuts                                                                     |           |           | Higgs search cuts |           |           |
| $ \mathcal{M}_{cont(gg:1,2)} ^2$                                                                                                             | 53.64(1)                                                                    |           |           | 1.3837(3)         |           |           |
| $ \mathcal{M}_{cont(gg:3)} ^2$                                                                                                               | 2.859(3)                                                                    |           |           | 0.00377(2)        |           |           |
| $ \mathcal{M}_{cont(gg:1,2,3)} ^2$                                                                                                           | 60.00(1)                                                                    |           |           | 1.4153(3)         |           |           |
| $\frac{ \mathcal{M}_{cont}(gg:1,2,3) ^2}{ \mathcal{M}_{cont}(gg:1,2) ^2 +  \mathcal{M}_{cont}(gg:3) ^2}$                                     | 1.06                                                                        |           |           | 1.02              |           |           |
| $M_H[{ m GeV}]$                                                                                                                              | 140                                                                         | 170       | 200       | 140               | 170       | 200       |
| $ \mathcal{M}_{sig} ^2$                                                                                                                      | 79.83(2)                                                                    | 116.23(3) | 75.40(2)  | 1.8852(5)         | 12.974(2) | 1.6663(7) |
| $ \mathcal{M}_{sig+cont(gg:1,2,3)} ^2$                                                                                                       | 132.50(5)                                                                   | 174.58(9) | 134.46(5) | 3.174(2)          | 15.287(6) | 3.413(2)  |
| $\frac{\left \mathcal{M}_{sig+cont}(gg:1,2,3)\right ^{2}}{\left \mathcal{M}_{sig}\right ^{2}+\left \mathcal{M}_{cont}(gg:1,2,3)\right ^{2}}$ | 0.948                                                                       | 0.991     | 0.993     | 0.962             | 1.062     | 1.108     |

#### details: see hep-ph/0611170

## Signal-background interference for $M_H = 400 \text{ GeV}$ Settings and cuts

 $\label{eq:masses} \begin{array}{l} \mu_R = \mu_F = M_H/2 = 200 \ {\rm GeV}, \ \Gamma_H = 29.16 \ {\rm GeV} \\ {\rm MSTW2008LO} \ (68\% \ {\rm C.L.}), \ {\rm other:} \ {\rm LHC} \ {\rm Higgs} \ {\rm Cross} \\ {\rm Section} \ {\rm WG}, \ {\rm arXiv:} 1101.0593 \ [{\rm hep-ph}], \ {\rm App.} \ {\rm A} \ ({\rm with} \ G_\mu \ {\rm scheme}) \end{array}$ 

#### WW standard cuts:

 $p_{T\ell} > 20 \; {\rm GeV} \, , \; |\eta_\ell| < 2.5$ 

 ${\not\!\!p}_T>30~{\rm GeV}\,,~M_{\ell\bar\ell'}>12~{\rm GeV}$ 

WW Higgs search cuts ( $M_H = 400$  GeV):

standard cuts and

 $p_{T\ell\min} > 25 \text{ GeV}, \ p_{T\ell\max} > 90 \text{ GeV}$ 

 $M_{\ell\bar\ell'} < 300~{\rm GeV}\,,~\Delta\phi_{\ell\bar\ell'} < 175^\circ$ 

#### ZZ standard cuts:

 $p_{T\ell} > 20 \text{ GeV}, \ |\eta_{\ell}| < 2.5$ 76 GeV  $< M_{\ell\bar{\ell}}, M_{\ell'\bar{\ell}'} < 106 \text{ GeV}$ 

・ロト・日本・ キョト・ヨー

## Signal-background interference for $M_H = 400 \text{ GeV}$ Results

#### $gg ightarrow WW ightarrow \ell ar{ u}_\ell ar{\ell}' u_{\ell'}$ , LHC, 7 TeV, standard cuts:

 $\sigma(|\mathcal{M}_{\text{sig}} + \mathcal{M}_{\text{cont}}|^2) = 10.5817 \text{ MC: } \pm 0.0063 (\pm 0.059\%) \text{ scale}(\times 2): -2.5573 (-24\%) + 3.6967 (+35\%) \text{ PDF: } -0.2723 (-2.6\%) + 0.2382 (+2.3\%) \text{ fb}, \text{ sym. scale error: } \pm 28\%, \text{ sym. PDF error: } \pm 2.4\%$ 

 $\sigma(|\mathcal{M}_{\text{sig}}|^2)=4.3611$  MC:  $\pm 0.0021(\pm 0.048\%)$  scale(×2): -1.1500(-26%)+1.7227(+40%) PDF: -0.1318(-3%)+0.1261(+2.9%) fb, sym. scale error:  $\pm 31\%$ , sym. PDF error:  $\pm 3\%$ 

 $\sigma(|\mathcal{M}_{\text{cont}}|^2) = 6.3506 \text{ MC}: \pm 0.0039(\pm 0.062\%) \text{ scale}(\times 2): -1.4583(-23\%) + 2.0621(+32\%) \text{ PDF}: -0.1526(-2.4\%) + 0.1243(+2\%) \text{ fb, sym. scale error}: \pm 26\%, \text{ sym. PDF error}: \pm 2.2\%$ 

$$\frac{\sigma(|\mathcal{M}_{\rm sig} + \mathcal{M}_{\rm cont}|^2)}{\sigma(|\mathcal{M}_{\rm sig}|^2) + \sigma(|\mathcal{M}_{\rm cont}|^2)} = 0.9879(8) \quad (\text{at 14 TeV: } 0.9680(8))$$

## Signal-background interference for $M_H = 400 \text{ GeV}$

#### $gg ightarrow WW ightarrow \ell ar{ u}_\ell ar{\ell}' u_{\ell'}$ , LHC, 7 TeV, Higgs search cuts:

 $\sigma(|\mathcal{M}_{\text{sig}} + \mathcal{M}_{\text{cont}}|^2) = 3.007$  MC:  $\pm 0.003 (\pm 0.1\%)$  scale(×2): -0.782 (-26%) + 1.164 (+39%) PDF: -0.088 (-2.9%) + 0.084 (+2.8%) fb, sym. scale error:  $\pm 30\%$ , sym. PDF error:  $\pm 2.9\%$ 

 $\sigma(|\mathcal{M}_{\mathsf{sig}}|^2) = 2.502 \text{ MC: } \pm 0.002 (\pm 0.081\%) \text{ scale}(\times 2): -0.660 (-26\%) + 0.989 (+40\%) \text{ PDF: } -0.076 (-3\%) + 0.073 (+2.9\%) \text{ fb, sym. scale error: } \pm 31\%, \text{ sym. PDF error: } \pm 3\%$ 

 $\sigma(|\mathcal{M}_{\text{cont}}|^2)=0.633$  MC:  $\pm 0.001(\pm 0.15\%)$  scale(×2): -0.161(-25%)+0.237(+38%) PDF: -0.018(-2.8%)+0.017(+2.6%) fb, sym. scale error:  $\pm 30\%$ , sym. PDF error:  $\pm 2.7\%$ 

$$\frac{\sigma(|\mathcal{M}_{\text{sig}} + \mathcal{M}_{\text{cont}}|^2)}{\sigma(|\mathcal{M}_{\text{sig}}|^2) + \sigma(|\mathcal{M}_{\text{cont}}|^2)} = 0.959(2) \quad (\text{at 14 TeV: } 0.940(2))$$

## Signal-background interference for $M_H = 400 \text{ GeV}$

#### $gg ightarrow Z(\gamma^*) Z(\gamma^*) ightarrow \ell \bar{\ell} \ell' \bar{\ell}'$ , LHC, 7 TeV, standard cuts:

 $\sigma(|\mathcal{M}_{sig} + \mathcal{M}_{cont}|^2) = 0.6875 \text{ MC: } \pm 0.0009(\pm 0.12\%) \text{ scale}(\times 2): -0.1696(-25\%) + 0.2470(+36\%) \text{ PDF: } -0.0185(-2.7\%) + 0.0163(+2.4\%) \text{ fb, sym. scale error: } \pm 29\%, \text{ sym. PDF error: } \pm 2.5\%$ 

 $\sigma(|\mathcal{M}_{\mathsf{sig}}|^2) = 0.3658$  MC:  $\pm 0.0004 (\pm 0.11\%)$  scale(×2):-0.0961(-26%) + 0.1437(+39\%) PDF: -0.0110(-3%) + 0.0104(+2.8%) fb, sym. scale error:  $\pm 31\%$ , sym. PDF error:  $\pm 2.9\%$ 

 $\sigma(|\mathcal{M}_{\text{cont}}|^2)=0.3332$  MC:  $\pm 0.0004(\pm 0.1\%)$  scale(×2):-0.0774(-23%) + 0.1099(+33%) PDF: -0.0083(-2.5%) + 0.0068(+2%) fb, sym. scale error:  $\pm 27\%$ , sym. PDF error:  $\pm 2.3\%$ 

$$\frac{\sigma(|\mathcal{M}_{\rm sig} + \mathcal{M}_{\rm cont}|^2)}{\sigma(|\mathcal{M}_{\rm sig}|^2) + \sigma(|\mathcal{M}_{\rm cont}|^2)} = 0.984(2)$$

 $p_{T\ell}$  and  $\eta_{\ell}$  distributions ([GeV,] fb)







 $p_T$  and  $|\cos heta_{\ell ar{\ell}', {\sf beam}}|$  distributions ([GeV,] fb)



▲□▶▲御▶▲臣▶▲臣▶ 臣 めんの

 $M_{WW}$  and  $M_{\ell \bar{\nu}_{\ell}}$  distributions ([GeV,] fb)



 $M_T(WW)$  distributions ([GeV,] fb)



 $M_{\ell \bar{\ell}'}$  and  $\cos \theta_{\ell \bar{\ell}'}$  distributions ([GeV,] fb)



 $|\eta_{\ell} - \eta_{ar{\ell}}|$  and  $\Delta \phi_{\ell ar{\ell'}}$  distributions (0-180 degrees, fb)



## $p_{T\ell}$ and $\eta_{\ell}$ distributions ([GeV,] fb)



 $M_{\ell \bar{\ell} \ell' \bar{\ell}'}$  distribution ([GeV,] fb)



 $M_{\ell\bar{\ell}}$  and  $M_{\ell\ell'}$  distributions ([GeV,] fb)



 $\cos \theta_{\ell \bar{\ell}}$  and  $\cos \theta_{\ell \ell'}$  distributions ([GeV,] fb)



 $\Delta \phi_{\ell \bar{\ell}}$  and  $\Delta \phi_{\ell \ell'}$  distributions ([GeV,] fb)



# Conclusion

Interference effects are not suppressed and can be as large as 5-10% when Higgs search selection cuts are applied or for  $M_H \ll 2M_V$ .



"You call this evidence for the Higgs?" "Yes! Zero lifetime and infinite width!"

# **Backup Slides**

▲□▶▲□▶▲□▶▲□▶ = ● ● ●

 $p_{T\ell}$  and  $\eta_{\ell}$  distributions ([GeV,] fb)



・ロト・西ト・ヨト・ヨト・ 日・ うくの





▲ロト▲御ト▲臣ト▲臣ト 臣 のの⊙

 $p_T$  and  $|\cos heta_{\ell ar{\ell}', {\sf beam}}|$  distributions ([GeV,] fb)



▲ロト▲御ト▲臣ト▲臣ト 臣 のの⊙

 $M_{WW}$  and  $M_{\ell\bar{\nu}_{\ell}}$  distributions ([GeV,] fb)



▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ のQ@

 $M_T(WW)$  distributions ([GeV,] fb)



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の�()

 $|\eta_{\ell} - \eta_{ar{\ell}}|$  and  $\Delta \phi_{\ell ar{\ell}'}$  distributions (0-180 degrees, fb)



▲□▶▲□▶▲□▶▲□▶ = のへで

|                | $\sigma(pp \to W^*W^* \to \ell \bar{ u} \bar{\ell'} \nu')$ [fb], LHC, $M_W/2 \le \mu_{ m ren, fac} \le 2M_W$ |                                    |                                                  |                    |                   |                                           |
|----------------|--------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------|--------------------|-------------------|-------------------------------------------|
|                | qar q                                                                                                        |                                    | gg                                               | $\sigma_{gg,3gen}$ | σ <sub>NLO</sub>  | $\sigma_{\rm NLO+gg}$                     |
|                | LO                                                                                                           | NLO                                | NNLO                                             | $\sigma_{gg,2gen}$ | $\sigma_{\rm LO}$ | $\sigma_{\rm NLO}$                        |
| $\sigma_{tot}$ | $875.8(1)^{+54.9}_{-67.5}$                                                                                   | 1373(1) <sup>+71</sup><br>-79      | $\frac{60.00(1)}{53.64(1)^{+14.0}_{-10.8}}$      | 1.12               | 1.57              | 1.04<br>1.04                              |
| $\sigma_{std}$ | 270.5(1) <sup>+20.0</sup><br>-23.8                                                                           | 491.8(1) <sup>+27.5</sup><br>-32.7 | 29.79(2)<br>25.89(1) <sup>+6.85</sup><br>-5.29   | 1.15               | 1.82              | 1.06<br>1.05                              |
| $\sigma_{bkg}$ | 4.583(2) <sup>+0.42</sup><br>-0.48                                                                           | 4.79(3) <sup>+0.01</sup><br>-0.13  | 1.4153(3)<br>1.3837(3) <sup>+0.40</sup><br>-0.31 | 1.02               | 1.05              | $\begin{array}{c} 1.30\\ 1.29\end{array}$ |

2 massless generations, 3 generations

| $\sigma(pp \to Z^*(\gamma^*) Z^*(\gamma^*) \to \ell \bar{\ell} \ell' \bar{\ell}') \text{ [fb]}$ |          |              |                                         |                                                |
|-------------------------------------------------------------------------------------------------|----------|--------------|-----------------------------------------|------------------------------------------------|
| gg                                                                                              | LO       | $qar{q}$ NLO | $rac{\sigma_{ m NLO}}{\sigma_{ m LO}}$ | $\frac{\sigma_{\rm NLO+gg}}{\sigma_{\rm NLO}}$ |
| 16.3(1)                                                                                         | 105.2(1) | 118.9(2)     | 1.13                                    | 1.14                                           |