NExT PhD school, Cosener's House, July 2011

Supersymmetry: a very basic, biased and completely incomplete introduction

Michael Krämer (RWTH Aachen)

Outline

- The supersymmetric harmonic oscillator
- Motivation for SUSY: Symmetry \& the hierarchy problem
- The MSSM
- SUSY searches

References

- Supersymmetry and the MSSM: An Elementary introduction Ian J.R. Aitchison, e-Print: hep-ph/0505105
- A Supersymmetry primer Stephen P. Martin, e-Print: hep-ph/9709356
- Theory and phenomenology of sparticles M. Drees, R. Godbole, P. Roy, World Scientific
- Hide and seek with supersymmetry Herbi Dreiner, e-Print: hep-ph/9902347
- Beyond the standard model for hill walkers John R. Ellis, e-Print: hep-ph/9812235

Outline

- The supersymmetric harmonic oscillator
- Motivation for SUSY: Symmetry \& the hierarchy problem
- The MSSM
- SUSY searches

The supersymmetric harmonic oscillator

Recall raising and lowering operators in quantum mechanics

$$
\begin{array}{rlr}
b^{+}\left|n_{B}\right\rangle & =\sqrt{n_{B}+1}\left|n_{B}+1\right\rangle \\
b^{-}\left|n_{B}\right\rangle & = & \sqrt{n_{B}}\left|n_{B}-1\right\rangle
\end{array}
$$

where $b^{-}|0\rangle=0$ and $\left[b^{-}, b^{+}\right]=1 ;\left[b^{-}, b^{-}\right]=\left[b^{+}, b^{+}\right]=0$
$\rightarrow b^{+} / b^{-}$creates/annihilates bosons

The supersymmetric harmonic oscillator

Recall raising and lowering operators in quantum mechanics

$$
\begin{array}{rlr}
b^{+}\left|n_{B}\right\rangle & =\sqrt{n_{B}+1}\left|n_{B}+1\right\rangle \\
b^{-}\left|n_{B}\right\rangle & =\sqrt{n_{B}}\left|n_{B}-1\right\rangle
\end{array}
$$

where $b^{-}|0\rangle=0$ and $\left[b^{-}, b^{+}\right]=1 ;\left[b^{-}, b^{-}\right]=\left[b^{+}, b^{+}\right]=0$
$\rightarrow b^{+} / b^{-}$creates/annihilates bosons
Analogously for fermions

$$
\begin{array}{rlr}
f^{+}\left|n_{F}\right\rangle & =\sqrt{n_{F}+1}\left|n_{F}+1\right\rangle \\
f^{-}\left|n_{F}\right\rangle & =\sqrt{n_{F}}\left|n_{F}-1\right\rangle
\end{array}
$$

But fermions obey Pauli exclusion principle
\rightarrow only two states $|0\rangle$ and $f^{+}|0\rangle=|1\rangle$
So for fermions

$$
f^{+}|0\rangle=|1\rangle, f^{-}|1\rangle=|0\rangle \quad \text { and } \quad f^{-}|0\rangle=f^{+}|1\rangle=0
$$

For fermions

$$
f^{+}|0\rangle=|1\rangle, f^{-}|1\rangle=|0\rangle \quad \text { and } \quad f^{-}|0\rangle=f^{+}|1\rangle=0
$$

Matrix representation:
with $\quad|0\rangle \equiv\binom{1}{0}$ and $|1\rangle \equiv\binom{0}{1}$
one has

$$
f^{+}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad \text { and } \quad f^{-}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

and

$$
\left\{f^{-}, f^{+}\right\}=1 ;\left\{f^{-}, f^{-}\right\}=\left\{f^{+}, f^{+}\right\}=0
$$

For fermions

$$
f^{+}|0\rangle=|1\rangle, f^{-}|1\rangle=|0\rangle \quad \text { and } \quad f^{-}|0\rangle=f^{+}|1\rangle=0
$$

Matrix representation:
with $\quad|0\rangle \equiv\binom{1}{0} \quad$ and $\quad|1\rangle \equiv\binom{0}{1}$
one has
and

$$
\begin{gathered}
f^{+}=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right) \quad \text { and } \quad f^{-}=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right) \\
\left\{f^{-}, f^{+}\right\}=1 ;\left\{f^{-}, f^{-}\right\}=\left\{f^{+}, f^{+}\right\}=0
\end{gathered}
$$

Thus, bosonic and fermionic Hamilton operators take the form

$$
\begin{aligned}
& H_{B}=\omega_{B}\left(b^{+} b^{-}+\frac{1}{2}\right) \\
& H_{F}=\omega_{F}\left(f^{+} f^{-}-\frac{1}{2}\right)
\end{aligned}
$$

SUSY transformations

SUSY operators act on product space

$$
\left|n_{B}\right\rangle\left|n_{F}\right\rangle \equiv\left|n_{B} n_{F}\right\rangle \quad \text { where } \quad n_{B}=0,1, \ldots, \infty ; \quad n_{F}=0,1
$$

SUSY transformations

SUSY operators act on product space

$$
\left|n_{B}\right\rangle\left|n_{F}\right\rangle \equiv\left|n_{B} n_{F}\right\rangle \quad \text { where } \quad n_{B}=0,1, \ldots, \infty ; \quad n_{F}=0,1
$$

Need to construct operators with

$$
\begin{aligned}
Q_{+}\left|n_{B} n_{F}\right\rangle & \propto\left|n_{B}-1, n_{F}+1\right\rangle \\
Q_{-}\left|n_{B} n_{F}\right\rangle & \propto\left|n_{B}+1, n_{F}-1\right\rangle
\end{aligned}
$$

so that

$$
\begin{array}{ll}
\left.\left.Q_{+} \mid \text {boson }\right\rangle \propto \mid \text { fermion }\right\rangle & \left.Q_{+} \mid \text {fermion }\right\rangle=0 \\
\left.\left.Q_{-} \mid \text {fermion }\right\rangle \propto \mid \text { boson }\right\rangle & \left.Q_{-} \mid \text {boson }\right\rangle=0 .
\end{array}
$$

SUSY transformations

SUSY operators act on product space

$$
\left|n_{B}\right\rangle\left|n_{F}\right\rangle \equiv\left|n_{B} n_{F}\right\rangle \quad \text { where } \quad n_{B}=0,1, \ldots, \infty ; \quad n_{F}=0,1
$$

Need to construct operators with

$$
\begin{aligned}
Q_{+}\left|n_{B} n_{F}\right\rangle & \propto\left|n_{B}-1, n_{F}+1\right\rangle \\
Q_{-}\left|n_{B} n_{F}\right\rangle & \propto\left|n_{B}+1, n_{F}-1\right\rangle
\end{aligned}
$$

so that

$$
\begin{array}{ll}
\left.\left.Q_{+} \mid \text {boson }\right\rangle \propto \mid \text { fermion }\right\rangle & \left.Q_{+} \mid \text {fermion }\right\rangle=0 \\
\left.\left.Q_{-} \mid \text {fermion }\right\rangle \propto \mid \text { boson }\right\rangle & \left.Q_{-} \mid \text {boson }\right\rangle=0 .
\end{array}
$$

A simple choice is

$$
\begin{aligned}
Q_{+} & =b^{-} f^{+} \\
Q_{-} & =b^{+} f^{-}
\end{aligned}
$$

where $\left(f^{+}\right)^{2}=\left(f^{-}\right)^{2}=0 \quad \Rightarrow \quad Q_{+}^{2}=Q_{-}^{2}=0$.

We now want to construct a SUSY invariant Hamilton operator so that $\left[H_{\text {SUSY }}, Q_{ \pm}\right]=0$.

We now want to construct a SUSY invariant Hamilton operator so that

$$
\left[H_{\text {SUSY }}, Q_{ \pm}\right]=0 .
$$

The simple choice

$$
H_{\mathrm{SUSY}}=\left\{Q_{+}, Q_{-}\right\}
$$

works.
[Check e.g. $\left[H_{\text {SUSY }}, Q_{+}\right]=Q_{+} Q_{-} Q_{+}+Q_{-} Q_{+} Q_{+}-Q_{+} Q_{+} Q_{-}-Q_{+} Q_{-} Q_{+}=0$.]

We now want to construct a SUSY invariant Hamilton operator so that

$$
\left[H_{\mathrm{SUSY}}, Q_{ \pm}\right]=0 .
$$

The simple choice

$$
H_{\text {SUSY }}=\left\{Q_{+}, Q_{-}\right\}
$$

works.
[Check e.g. $\left[H_{\text {SUSY }}, Q_{+}\right]=Q_{+} Q_{-} Q_{+}+Q_{-} Q_{+} Q_{+}-Q_{+} Q_{+} Q_{-}-Q_{+} Q_{-} Q_{+}=0$.]

Now recall

$$
\begin{aligned}
& Q_{+}=\sqrt{\omega} b^{-} f^{+} \\
& Q_{-}=\sqrt{\omega} b^{+} f^{-}
\end{aligned}
$$

so that $H_{\text {SUSY }}=\omega\left\{b^{-} f^{+}, b^{+} f^{-}\right\}$

$$
\begin{aligned}
& =\omega\left(b^{-} f^{+} b^{+} f^{-}+b^{+} f^{-} b^{-} f^{+}\right) \\
& =\omega\left(\left(1+b^{+} b^{-}\right) f^{+} f^{-}+b^{+} b^{-}\left(1-f^{+} f^{-}\right)\right) \\
& =\omega\left(f^{+} f^{-}+b^{+} b^{-}\right) \\
& =H_{B}+H_{F}
\end{aligned}
$$

provided we set $\omega_{B}=\omega_{F}=\omega$.

The energy spectrum of the SUSY oscillator has remarkable features

$$
H_{\text {SUSY }}\left|n_{B} n_{F}\right\rangle=\omega\left(N_{B}+N_{F}\right)\left|n_{B} n_{F}\right\rangle
$$

$\rightarrow E=\omega\left(n_{B}+n_{F}\right)$
\rightarrow the energy of the ground state is zero

The energy spectrum of the SUSY oscillator has remarkable features

$$
H_{\text {SUSY }}\left|n_{B} n_{F}\right\rangle=\omega\left(N_{B}+N_{F}\right)\left|n_{B} n_{F}\right\rangle
$$

$\rightarrow E=\omega\left(n_{B}+n_{F}\right)$
\rightarrow the energy of the ground state is zero

The spectrum of the SUSY oscillator:

Summary of the SUSY oscillator

- If we start with a bosonic system we need to introduce fermions (and vice versa)
- We need identical couplings: $\omega_{F}=\omega_{B}$
- The spectrum consists of pairs of states (bosonic/fermionic) with the same energy
- The energy of the ground state is zero

Summary of the SUSY oscillator

- If we start with a bosonic system we need to introduce fermions (and vice versa)
\rightarrow for a SUSY extension of the SM we will have to introduce SUSY partners for all SM particles
- We need identical couplings: $\omega_{F}=\omega_{B}$
\rightarrow SUSY extensions of the SM do not introduce new couplings
- The spectrum consists of pairs of states (bosonic/fermionic) with the same energy
\rightarrow SM particles and SUSY partners have the same mass (and internal quantum numbers)
- The energy of the ground state is zero
\rightarrow SUSY QFTs have less divergences

Outline

- The supersymmetric harmonic oscillator
- Motivation for SUSY: Symmetry \& the hierarchy problem
- The MSSM
- SUSY searches

Why supersymmetric quantum field theory?

SUSY is a symmetry which relates fermions and bosons:

$$
\begin{aligned}
Q \mid \text { fermion }\rangle & =\mid \text { boson }\rangle \\
Q \mid \text { boson }\rangle & =\mid \text { fermion }\rangle
\end{aligned}
$$

Q is s spinorial generator, i.e. has spin $=1 / 2$.

Why supersymmetric quantum field theory?

SUSY is a symmetry which relates fermions and bosons:

$$
\begin{aligned}
Q \mid \text { fermion }\rangle & =\mid \text { boson }\rangle \\
Q \mid \text { boson }\rangle & =\mid \text { fermion }\rangle
\end{aligned}
$$

Q is s spinorial generator, i.e. has spin $=1 / 2$.
To construct a Lagrangian which is supersymmetric, i.e. invariant under

$$
\mid \text { fermion }\rangle \leftrightarrow \mid \text { boson }\rangle
$$

we will need to double the spectrum.

Why supersymmetric quantum field theory?

SUSY is a symmetry which relates fermions and bosons:

$$
\begin{aligned}
Q \mid \text { fermion }\rangle & =\mid \text { boson }\rangle \\
Q \mid \text { boson }\rangle & =\mid \text { fermion }\rangle
\end{aligned}
$$

Q is s spinorial generator, i.e. has spin $=1 / 2$.
To construct a Lagrangian which is supersymmetric, i.e. invariant under

$$
\mid \text { fermion }\rangle \leftrightarrow \mid \text { boson }\rangle
$$

we will need to double the spectrum.
Example: electron $\left(\psi_{e}\right)_{L}(s=1 / 2) \leftrightarrow \phi_{\tilde{e}_{L}}(s=0)$ (scalar electron $\left.\tilde{e}_{L}\right)$

$$
\left.\left(\psi_{e}\right)_{R}(s=1 / 2) \leftrightarrow \phi_{\tilde{e}_{R}}(s=0) \text { (scalar electron } \tilde{e}_{R}\right)
$$

Note: $\tilde{e}_{L / R}$ are called "left/right-handed" selectron to indicate SUSY partner (scalar particle has no helicity).

How do we characterize a particle?
Consider Lorentz group (rotations \& boosts) with invariants

$$
P_{\mu} P^{\mu}=m^{2} \quad \text { and } \quad W_{\mu} W^{\mu}=-m^{2} s(s+1) .
$$

P_{μ} : energy momentum operator
$W_{\mu}=\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} P_{\nu} M_{\rho \sigma}$: Pauli-Lubanski spin vector
where $M_{\mu \nu}=$ angular momentum tensor $=x^{\mu} P^{n} u-x^{\nu} P^{\mu}+\frac{1}{2} \Sigma^{\mu \nu}$
\rightarrow particles are characterized by Lorentz invariants: mass and spin

How do we characterize a particle?
Consider Lorentz group (rotations \& boosts) with invariants

$$
P_{\mu} P^{\mu}=m^{2} \quad \text { and } \quad W_{\mu} W^{\mu}=-m^{2} s(s+1) .
$$

P_{μ} : energy momentum operator
$W_{\mu}=\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} P_{\nu} M_{\rho \sigma}$: Pauli-Lubanski spin vector
where $M_{\mu \nu}=$ angular momentum tensor $=x^{\mu} P^{n} u-x^{\nu} P^{\mu}+\frac{1}{2} \Sigma^{\mu \nu}$
\rightarrow particles are characterized by Lorentz invariants: mass and spin

The $\left\{\begin{array}{c}\text { Lorentz } \\ \text { Gauge }\end{array}\right\}$ symmetry is an $\left\{\begin{array}{c}\text { external } \\ \text { internal }\end{array}\right\}$ symmetry.
\rightarrow invariants of gauge symmetries ("charges") do not change in space and time
\rightarrow the generators of the gauge group T^{a} commute with the generators of the Lorentz group $\left[T^{a}, P^{\mu}\right]=0$ and $\left[T^{a}, M^{\mu \nu}\right]=0$

The Coleman-Mandula theorem

Coleman \& Mandula, " All Possible Symmetries of the S Matrix", PRD 159 (1967):

The only possible conserved quantities that transform as tensors under the Lorentz group are the generators of the Lorentz group ($P_{\mu}, M_{\mu \nu}$) and Lorentz scalars (internal symmetries).

According to Coleman \& Mandula, if we add to the Lorentz symmetry any further external symmetry, whose generators are tensors, then the scattering process must be trivial, i.e. there is no scattering at all.

Let us work this out in an example...

We consider

$2 \rightarrow 2$ spinless scattering

and take, for simplicity, $p_{i}^{2}=m_{i}^{2}=m^{2}$.
Momentum conservation implies $p_{1}+p_{2}=p_{3}+p_{4}$.

We consider

$2 \rightarrow 2$ spinless scattering
and take, for simplicity, $p_{i}^{2}=m_{i}^{2}=m^{2}$.
Momentum conservation implies $p_{1}+p_{2}=p_{3}+p_{4}$.
Now let us postulate an additional external symmetry,
e.g. a conserved tensor $R_{\mu \nu}=p_{\mu} p_{\nu}-\frac{1}{4} g_{\mu \nu} m^{2}$.

If $R_{\mu \nu}$ is conserved, then

$$
\begin{aligned}
R_{\mu \nu}^{1}+R_{\mu \nu}^{2} & =R_{\mu \nu}^{3}+R_{\mu \nu}^{4} \\
\text { and thus } p_{\mu}^{1} p_{\nu}^{1}+p_{\mu}^{2} p_{\nu}^{2} & =p_{\mu}^{3} p_{\nu}^{3}+p_{\mu}^{4} p_{\nu}^{4} .
\end{aligned}
$$

Specifically, in the center-of-mass frame we have

$$
\begin{aligned}
& p_{1}=(E, 0,0, p) \\
& p_{2}=(E, 0,0,-p) \\
& p_{3}=(E, 0, p \sin \theta, p \cos \theta) \\
& p_{4}=(E, 0,-p \sin \theta,-p \cos \theta)
\end{aligned}
$$

Let us look at e.g. $\mu=\nu=4$. We find

$$
2 p^{2}=2 p^{2} \cos \theta
$$

$\Rightarrow \theta=0$, i.e. no scattering

The Haag-Lopuszanski-Sohnius theorem

Tensors $a_{\mu_{1} \cdots \mu_{N}}$ are combinations of Lorentz vector indices, which each transform like a vector:

$$
a_{\mu_{1} \cdots \mu_{N}}^{\prime}=\Lambda_{\mu_{1}}^{\nu_{1}} \cdots \Lambda_{\mu_{N}}^{\nu_{N}} a_{\mu_{1} \cdots \mu_{N}}
$$

\rightarrow tensors are bosons
This points to the loop-hole in the Coleman-Mandula "no-go" theorem: The argument of Coleman-Mandula does not apply to conserved charges transforming as spinors.

The Haag-Lopuszanski-Sohnius theorem

Tensors $a_{\mu_{1} \cdots \mu_{N}}$ are combinations of Lorentz vector indices, which each transform like a vector:

$$
a_{\mu_{1} \cdots \mu_{N}}^{\prime}=\Lambda_{\mu_{1}}^{\nu_{1}} \cdots \Lambda_{\mu_{N}}^{\nu_{N}} a_{\mu_{1} \cdots \mu_{N}}
$$

\rightarrow tensors are bosons
This points to the loop-hole in the Coleman-Mandula "no-go" theorem:
The argument of Coleman-Mandula does not apply to conserved charges transforming as spinors.

Haag, Lopuszanski \& Sohnius (1975):
Supersymmetry is the only possible external symmetry of the scattering amplitude beyond Lorentz symmetry, for which the scattering is non-trivial.

The Haag-Lopuszanski-Sohnius theorem

Tensors $a_{\mu_{1} \cdots \mu_{N}}$ are combinations of Lorentz vector indices, which each transform like a vector:

$$
a_{\mu_{1} \cdots \mu_{N}}^{\prime}=\Lambda_{\mu_{1}}^{\nu_{1}} \cdots \Lambda_{\mu_{N}}^{\nu_{N}} a_{\mu_{1} \cdots \mu_{N}}
$$

\rightarrow tensors are bosons
This points to the loop-hole in the Coleman-Mandula "no-go" theorem:
The argument of Coleman-Mandula does not apply to conserved charges transforming as spinors.

Haag, Lopuszanski \& Sohnius (1975):
Supersymmetry is the only possible external symmetry of the scattering amplitude beyond Lorentz symmetry, for which the scattering is non-trivial.

How could nature have ignored this last possible external symmetry?

Supersymmetry

What is the algebra of the SUSY generators Q_{α} ?
One can work out that

$$
\begin{aligned}
{\left[P^{\mu}, Q_{\alpha}\right] } & =0 \\
{\left[M^{\mu \nu}, Q_{\alpha}\right] } & =-i\left(\sigma^{\mu \nu}\right)_{\alpha}^{\beta} Q_{\beta} \\
\left\{Q_{\alpha}, Q_{\beta}\right\} & =0 \\
\left\{Q_{\alpha}, Q_{\beta}^{\dagger}\right\} & =2\left(\sigma^{\mu}\right)_{\alpha \beta} P_{\mu}
\end{aligned}
$$

where $\sigma^{\mu}=\left(1, \sigma^{i}\right), \bar{\sigma}^{\mu}=\left(1, \sigma^{i}\right), \sigma^{\mu \nu}=\left(\sigma^{\mu} \bar{\sigma}^{\nu}-\sigma^{\nu} \bar{\sigma}^{\mu}\right) / 4$.

Supersymmetry

What is the algebra of the SUSY generators Q_{α} ?
One can work out that

$$
\begin{aligned}
{\left[P^{\mu}, Q_{\alpha}\right] } & =0 \\
{\left[M^{\mu \nu}, Q_{\alpha}\right] } & =-i\left(\sigma^{\mu \nu}\right)_{\alpha}^{\beta} Q_{\beta} \\
\left\{Q_{\alpha}, Q_{\beta}\right\} & =0 \\
\left\{Q_{\alpha}, Q_{\beta}^{\dagger}\right\} & =2\left(\sigma^{\mu}\right)_{\alpha \beta} P_{\mu}
\end{aligned}
$$

where $\sigma^{\mu}=\left(1, \sigma^{i}\right), \bar{\sigma}^{\mu}=\left(1, \sigma^{i}\right), \sigma^{\mu \nu}=\left(\sigma^{\mu} \bar{\sigma}^{\nu}-\sigma^{\nu} \bar{\sigma}^{\mu}\right) / 4$.
Q raises by spin $1 / 2, Q^{\dagger}$ lowers by spin $1 / 2$
$\tilde{c}_{2}(5=0)$

$$
e_{c}\left(s=\frac{1}{2}\right)
$$

Supersymmetry

What are the immediate consequences of SUSY invariance?

$$
\left[P^{\mu}, Q\right]=0 \quad \Rightarrow \quad\left[m^{2}, Q\right]=\left[P_{\mu} P^{\mu}, Q\right]=0
$$

Supersymmetry

What are the immediate consequences of SUSY invariance?

$$
\left[P^{\mu}, Q\right]=0 \quad \Rightarrow \quad\left[m^{2}, Q\right]=\left[P_{\mu} P^{\mu}, Q\right]=0
$$

Thus we must have

$$
m_{\tilde{e}}=m_{e} .
$$

Supersymmetry

What are the immediate consequences of SUSY invariance?

$$
\left[P^{\mu}, Q\right]=0 \quad \Rightarrow \quad\left[m^{2}, Q\right]=\left[P_{\mu} P^{\mu}, Q\right]=0
$$

Thus we must have

$$
m_{\tilde{e}}=m_{e} .
$$

But we have not seen a $511 \mathrm{keV}=m_{\tilde{e}}$ charged $\left(\left[Q, T^{2}\right]=0\right)$ scalar
\rightarrow SUSY must be broken
At what scale?
What is the mass of the supersymmetric particles?

The hierarchy problem and the scale of SUSY breaking

The hierarchy problem and the scale of SUSY breaking

Let us first look at electrodynamics:
The Coulomb field of the electron is $E_{\text {self }}=\frac{3}{5} \frac{e^{2}}{r_{e}}$.
This can be interpreted as a contribution to the electron mass:

$$
m_{e} c^{2}=m_{e, 0} c^{2}+E_{\text {self }} .
$$

The hierarchy problem and the scale of SUSY breaking

Let us first look at electrodynamics:
The Coulomb field of the electron is $E_{\text {self }}=\frac{3}{5} \frac{e^{2}}{r_{e}}$.
This can be interpreted as a contribution to the electron mass:

$$
m_{e} c^{2}=m_{e, 0} c^{2}+E_{\text {self }} .
$$

However, with $r_{e} \lesssim 10^{-17} \mathrm{~cm}$ (exp. bound on point-like nature) one has

$$
m_{e} c^{2}=511 \mathrm{keV}=(-9999.489+10000.000) \mathrm{keV}
$$

\rightarrow fine-tuning!

Is there fine-tuning in quantum electrodynamics?

Is there fine-tuning in quantum electrodynamics?

Coulomb self-energy in time-ordered perturbation theory:

Is there fine-tuning in quantum electrodynamics?

Coulomb self-energy in time-ordered perturbation theory:

But also have positron e^{+}with $Q\left(e^{+}\right)=-Q\left(e^{-}\right)$and $m\left(e^{+}\right)=m\left(e^{-}\right)$
\rightarrow new diagram

e-

Is there fine-tuning in quantum electrodynamics?

Coulomb self-energy in time-ordered perturbation theory:

But also have positron e^{+}with $Q\left(e^{+}\right)=-Q\left(e^{-}\right)$and $m\left(e^{+}\right)=m\left(e^{-}\right)$
\rightarrow new diagram

$\rightarrow m_{e} c^{2}=m_{e, 0} c^{2}\left(1+\frac{3 \alpha}{4 \pi} \ln \left(\frac{\hbar}{m_{e} c r_{e}}\right)\right)$

We found that $m_{e} c^{2}=m_{e, 0} c^{2}\left(1+\frac{3 \alpha}{4 \pi} \ln \left(\frac{\hbar}{m_{e} c r_{e}}\right)\right)$.
So even if $r_{e}=1 / M_{\text {Planck }}=1.6 \times 10^{-33} \mathrm{~cm}$, the corrections to the electron mass are small

$$
m_{e} c^{2} \approx m_{e, 0} c^{2}(1+0.1)
$$

Also, if $m_{e, 0}=0$ then $m_{e}=0$ to all orders:
the mass is protected by a (chiral) symmetry

We found that $m_{e} c^{2}=m_{e, 0} c^{2}\left(1+\frac{3 \alpha}{4 \pi} \ln \left(\frac{\hbar}{m_{e} c r_{e}}\right)\right)$.
So even if $r_{e}=1 / M_{\text {Planck }}=1.6 \times 10^{-33} \mathrm{~cm}$, the corrections to the electron mass are small

$$
m_{e} c^{2} \approx m_{e, 0} c^{2}(1+0.1)
$$

Also, if $m_{e, 0}=0$ then $m_{e}=0$ to all orders:
the mass is protected by a (chiral) symmetry

Recall 't Hooft's naturalness argument

A dimensionless number x is allowed to be very small iff

The value $x=0$ would imply an exact symmetry

Now let us look at the scalar (=Higgs) self-energy:

Now let us look at the scalar (=Higgs) self-energy:

$$
\Rightarrow \Delta m_{\phi}^{2}=2 N(f) \lambda_{f}^{2} \int \frac{d^{4} k}{(2 \pi)^{4}}\left(\frac{1}{k^{2}-m_{f}^{2}}+\frac{2 m_{f}^{2}}{\left(k^{2}-m_{f}^{2}\right)^{2}}\right)
$$

The integral is divergent, so we introduce a momentum cut-off.
[Recall that $d^{4} k \sim k^{3} d k \rightarrow \int^{\Lambda} d k k^{3} /\left(k^{2}-m_{f}^{2}\right) \sim \Lambda^{2}$ and $\int^{\Lambda} d k k^{3} /\left(k^{2}-m_{f}^{2}\right)^{2} \sim \ln \Lambda$.]

Now let us look at the scalar (=Higgs) self-energy:

$$
\Rightarrow \Delta m_{\phi}^{2}=2 N(f) \lambda_{f}^{2} \int \frac{d^{4} k}{(2 \pi)^{4}}\left(\frac{1}{k^{2}-m_{f}^{2}}+\frac{2 m_{f}^{2}}{\left(k^{2}-m_{f}^{2}\right)^{2}}\right)
$$

The integral is divergent, so we introduce a momentum cut-off.
[Recall that $d^{4} k \sim k^{3} d k \rightarrow \int^{\wedge} d k k^{3} /\left(k^{2}-m_{f}^{2}\right) \sim \Lambda^{2}$ and $\int^{\Lambda} d k k^{3} /\left(k^{2}-m_{f}^{2}\right)^{2} \sim \ln \Lambda$.]
Straightforward calculation gives

$$
\Delta m_{\phi}^{2}=\frac{N(f) \lambda_{f}^{2}}{8 \pi^{2}}\left(\Lambda^{2}+3 m_{f}^{2} \ln \left(\frac{\Lambda^{2}+m_{f}^{2}}{m_{f}^{2}}\right)+2 m_{f}^{2} \frac{\Lambda^{2}}{\Lambda^{2}+m_{f}^{2}}\right) .
$$

Because of the quadratic divergence we find

$$
\Delta m_{\phi}^{2}\left(\Lambda=M_{\text {Planck }}\right) \approx 10^{35} \mathrm{GeV}^{2}=\left(3 \times 10^{17} \mathrm{GeV}\right)^{2}
$$

Because of the quadratic divergence we find

$$
\Delta m_{\phi}^{2}\left(\Lambda=M_{\text {Planck }}\right) \approx 10^{35} \mathrm{GeV}^{2}=\left(3 \times 10^{17} \mathrm{GeV}\right)^{2}
$$

and so

$$
m_{\phi}^{2} \lesssim 1 \mathrm{TeV}^{2}=m_{\phi, 0}^{2}+\Delta m_{\phi}^{2}
$$

implies a huge fine-tuning:

1,327,502,927,651,044,832,749,373,256,184,029
 - 1,327,502,927,651,044,832,749,373,256,183,788 241

Comment: it is essential that $\Lambda<\infty$, i.e. we assume that new physics sets in at $E \sim \Lambda$. Is this a tautology? No: we assume new physics at some very high scale Λ and find that the standard model needs new physics well below Λ.

The natural mass scale of a scalar field is the highest scale in nature.

The SUSY solution to the hierarchy problem

The SUSY solution to the hierarchy problem

Let us increase the particle content (as for the e^{-}self-energy)

Before we had

Now we include in addition two scalars $\tilde{f}_{L}, \tilde{f}_{R}$ with couplings
$\mathcal{L}_{\phi \tilde{f}}=-\frac{\tilde{\lambda}_{f}^{2}}{2} \phi^{2}\left(\left|\tilde{f}_{L}\right|^{2}+\left|\tilde{f}_{R}\right|^{2}\right)-v \tilde{\lambda}_{f}^{2} \phi\left(\left|\tilde{f}_{L}\right|^{2}+\left|\tilde{f}_{R}\right|^{2}\right)+\left(\frac{\lambda_{f}}{\sqrt{2}} A_{f} \phi \tilde{f}_{L} \tilde{f}_{R}^{*}+\right.$ h.c. $)$
which lead to additional contributions to the self-energy:

The additional contributions to the Higgs mass are:

$$
\begin{aligned}
\Delta m_{\phi}^{2} & =\tilde{\lambda}_{f}^{2} N(\tilde{f}) \int \frac{d^{4} k}{(2 \pi)^{4}}\left(\frac{1}{k^{2}-m_{\tilde{f}_{L}}^{2}}+\frac{1}{k^{2}-m_{\tilde{f}_{R}}^{2}}\right) \\
& +\left(\tilde{\lambda}_{f}^{2} v\right)^{2} N(\tilde{f}) \int \frac{d^{4} k}{(2 \pi)^{4}}\left(\frac{1}{\left(k^{2}-m_{\tilde{f}_{L}}^{2}\right)^{2}}+\frac{1}{\left(k^{2}-m_{\tilde{f}_{R}}^{2}\right)^{2}}\right) \\
& +\left(\lambda_{f} A_{f}\right)^{2} N(\tilde{f}) \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{\left(k^{2}-m_{\tilde{f}_{L}}^{2}\right)\left(k^{2}-m_{\tilde{f}_{R}}^{2}\right)}
\end{aligned}
$$

The additional contributions to the Higgs mass are:

$$
\begin{aligned}
\Delta m_{\phi}^{2} & =\tilde{\lambda}_{f}^{2} N(\tilde{f}) \int \frac{d^{4} k}{(2 \pi)^{4}}\left(\frac{1}{k^{2}-m_{\tilde{f}_{L}}^{2}}+\frac{1}{k^{2}-m_{\tilde{f}_{R}}^{2}}\right) \\
& +\left(\tilde{\lambda}_{f}^{2} v\right)^{2} N(\tilde{f}) \int \frac{d^{4} k}{(2 \pi)^{4}}\left(\frac{1}{\left(k^{2}-m_{\tilde{f}_{L}}^{2}\right)^{2}}+\frac{1}{\left(k^{2}-m_{\tilde{f}_{R}}^{2}\right)^{2}}\right) \\
& +\left(\lambda_{f} A_{f}\right)^{2} N(\tilde{f}) \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{\left(k^{2}-m_{\tilde{f}_{L}}^{2}\right)\left(k^{2}-m_{\tilde{f}_{R}}^{2}\right)}
\end{aligned}
$$

The first term cancels the SM Λ^{2}-contribution if

$$
\tilde{\lambda}_{f}=\lambda_{f} \quad \text { and } \quad N(\tilde{f})=N(f)
$$

as required in SUSY.

The cancellation happens because of spin-statistics:

fermion loop $\rightarrow(-1)$

boson-loop $\rightarrow(+1)$

The cancellation happens because of spin-statistics:

fermion loop $\rightarrow(-1)$
boson-loop $\rightarrow(+1)$

Note:

- the cancellation of quadratic divergences is independent of $m_{\tilde{f}_{\mathrm{L}}}, m_{\tilde{f}_{R^{\prime}}}, A_{f}$.
- the term $\propto A_{f} \phi \tilde{f}_{L} \tilde{f}_{R}^{*}$ breaks SUSY but does not lead to Λ^{2} divergences
\rightarrow "soft" SUSY breaking

Let us look at the finite SM + SUSY contributions:

$$
\begin{aligned}
\Delta m_{\phi}^{2}=\frac{\lambda_{f}^{2} N(f)}{16 \pi^{2}} & \left(-2 m_{f}^{2}\left(1-\ln \frac{m_{f}^{2}}{\mu^{2}}\right)+4 m_{f}^{2} \ln \frac{m_{f}^{2}}{\mu^{2}}\right. \\
& \left.+2 m_{\tilde{f}}^{2}\left(1-\ln \frac{m_{\tilde{f}}^{2}}{\mu^{2}}\right)-4 m_{\tilde{f}}^{2} \ln \frac{m_{\tilde{f}}^{2}}{\mu^{2}}-\left|A_{f}\right|^{2} \ln \frac{m_{\tilde{f}}^{2}}{\mu^{2}}\right),
\end{aligned}
$$

where we have assumed $m_{\tilde{f}_{L}}=m_{\tilde{f}_{R}}=m_{\tilde{f}}$.

Let us look at the finite SM + SUSY contributions:

$$
\begin{aligned}
\Delta m_{\phi}^{2}=\frac{\lambda_{f}^{2} N(f)}{16 \pi^{2}} & \left(-2 m_{f}^{2}\left(1-\ln \frac{m_{f}^{2}}{\mu^{2}}\right)+4 m_{f}^{2} \ln \frac{m_{f}^{2}}{\mu^{2}}\right. \\
& \left.+2 m_{\tilde{f}}^{2}\left(1-\ln \frac{m_{\tilde{f}}^{2}}{\mu^{2}}\right)-4 m_{\tilde{f}}^{2} \ln \frac{m_{\tilde{f}}^{2}}{\mu^{2}}-\left|A_{f}\right|^{2} \ln \frac{m_{\tilde{f}}^{2}}{\mu^{2}}\right),
\end{aligned}
$$

where we have assumed $m_{\tilde{f}_{L}}=m_{\tilde{f}_{R}}=m_{\tilde{f}}$.
One has

$$
\Delta m_{\phi}^{2}=0 \quad \text { for } \quad A_{f}=0 \text { and } m_{\tilde{f}}=m_{f} \quad(\text { SUSY })
$$

Let us look at the finite SM + SUSY contributions:

$$
\begin{aligned}
\Delta m_{\phi}^{2}=\frac{\lambda_{f}^{2} N(f)}{16 \pi^{2}} & \left(-2 m_{f}^{2}\left(1-\ln \frac{m_{f}^{2}}{\mu^{2}}\right)+4 m_{f}^{2} \ln \frac{m_{f}^{2}}{\mu^{2}}\right. \\
& \left.+2 m_{\tilde{f}}^{2}\left(1-\ln \frac{m_{\tilde{f}}^{2}}{\mu^{2}}\right)-4 m_{\tilde{f}}^{2} \ln \frac{m_{\tilde{f}}^{2}}{\mu^{2}}-\left|A_{f}\right|^{2} \ln \frac{m_{\tilde{f}}^{2}}{\mu^{2}}\right),
\end{aligned}
$$

where we have assumed $m_{\tilde{f}_{L}}=m_{\tilde{f}_{R}}=m_{\tilde{f}}$.
One has

$$
\Delta m_{\phi}^{2}=0 \quad \text { for } \quad A_{f}=0 \text { and } m_{\tilde{f}}=m_{f} \quad \text { (SUSY) }
$$

But SUSY is broken, i.e. $m_{\tilde{f}}^{2}=m_{f}^{2}+\delta^{2}$. Thus

$$
\Delta m_{\phi}^{2}=\frac{\lambda_{f}^{2} N(f)}{8 \pi^{2}} \delta^{2}\left(2+\ln \frac{m_{f}^{2}}{\mu^{2}}\right)+\mathcal{O}\left(\delta^{4}\right)
$$

To have Δm_{ϕ}^{2} small, we thus need $m_{\tilde{f}}^{2}=m_{f}^{2}+\delta^{2}=\mathcal{O}\left(1 \mathrm{TeV}^{2}\right)$

Supersymmetry: Summary of first lecture

SUSY is great!

Must have been tired yesterday. . .

Motivation for supersymmetry

A Priori:

- SUSY is the unique maximal external symmetry in Nature.
- Weak-scale SUSY provides a solution to the hierarchy problem.

A Posteriori:

- SUSY allows for unification of Standard Model gauge interactions.
- SUSY provides dark matter candidates.
- SUSY QFT's allow for precision calculations.
- SUSY provides a rich phenomenology and is testable at the LHC.

Outline

- The supersymmetric harmonic oscillator
- Motivation for SUSY: Symmetry \& the hierarchy problem
- The MSSM
- SUSY searches

The Minimal Supersymmetric extension of the SM

- external symmetries: Poincare symmetry \& supersymmetry
- internal symmetries: $\mathrm{SU}(3) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1)$ gauge symmetries
- minimal particle content

Gauge Bosons $S=1$ gluon, $W^{ \pm}, Z, \gamma$	Gauginos $S=1 / 2$ gluino, $\widetilde{W}, \widetilde{Z}, \widetilde{\gamma}$
Fermions $S=1 / 2$	Sfermions $S=0$
$\binom{u_{L}}{d_{L}}\binom{\nu_{L}^{e}}{e_{L}}$	$\binom{\widetilde{u}_{L}}{\widetilde{d}_{L}}\binom{\widetilde{\nu}_{L}^{e}}{\widetilde{e}_{L}}$
u_{R}, d_{R}, e_{R}	$\widetilde{u}_{R}, \widetilde{d}_{R}, \widetilde{e}_{R}$
Higgs	Higgsinos
$\binom{H_{2}^{0}}{H_{2}^{-}}\binom{H_{1}^{+}}{H_{1}^{0}}$	$\binom{\widetilde{H}_{2}^{0}}{\widetilde{H}_{2}^{-}}\binom{\widetilde{H}_{1}^{+}}{\widetilde{H}_{1}^{0}}$

Gauge coupling unification

In QFT the gauge couplings "run":

$$
\frac{d \alpha_{i}(\mu)}{d \ln \mu^{2}}=\beta_{i}\left(\alpha_{i}(\mu)\right)
$$

The beta-functions β_{i} depend on the gauge group and on the matter multiplets to which the gauge bosons couple. Only particles with mass $<\mu$ contribute to the β_{i} and to the evolution of the coupling at any given mass scale μ.

The Standard Model couplings evolve with μ according to

$$
\begin{aligned}
& \mathrm{SU}(3): \beta_{3,0}=\left(33-4 n_{g}\right) /(12 \pi) \\
& \mathrm{SU}(2): \beta_{2,0}=\left(22-4 n_{g}-n_{h} / 2\right) /(12 \pi) \\
& \mathrm{U}(1):
\end{aligned} \beta_{1,0}=\left(-4 n_{g}-3 n_{h} / 10\right) /(12 \pi) .
$$

where $n_{g}=3$ is the number of quark and lepton generations and $n_{h}=1$ is the number of Higgs doublet fields in the Standard Model.

Gauge coupling unification

Loop contributions of superpartners change the beta-functions. In the MSSM one finds:

$$
\begin{aligned}
& \mathrm{SU}(3): \beta_{3,0}^{\mathrm{SUSY}}=\left(27-6 n_{g}\right) /(12 \pi) \\
& \mathrm{SU}(2): \beta_{3,0}^{\mathrm{SUSY}}=\left(18-6 n_{g}-3 n_{h} / 2\right) /(12 \pi) \\
& \mathrm{U}(1): \beta_{1,0}^{\mathrm{SUSY}}=\left(-6 n_{g}-9 n_{h} / 10\right) /(12 \pi)
\end{aligned}
$$

Gauge coupling unification

Loop contributions of superpartners change the beta-functions. In the MSSM one finds:

$$
\begin{aligned}
& \mathrm{SU}(3): \beta_{3, \mathrm{SOSY}}^{\mathrm{SUSY}}=\left(27-6 n_{g}\right) /(12 \pi) \\
& \mathrm{SU}(2): \beta_{2,0}^{\mathrm{SUSY}}=\left(18-6 n_{g}-3 n_{h} / 2\right) /(12 \pi) \\
& \mathrm{U}(1): \beta_{1,0}^{\mathrm{SUSY}}=\left(-6 n_{g}-9 n_{h} / 10\right) /(12 \pi)
\end{aligned}
$$

R-parity

- In the SM baryon and lepton number are accidental symmetries
- The most general superpotential of the SUSY-SM contains baryon and lepton number violating terms:

$$
W \in \underbrace{\lambda_{i j k} L_{i} L_{j} \bar{E}_{k}+\lambda_{i j k}^{\prime} L_{i} Q_{j} \bar{D}_{k}+\kappa_{i} L_{i} H_{2}}_{\text {lepton number violating }}+\underbrace{\lambda_{i j k}^{\prime \prime} \bar{U}_{i} \bar{D}_{j} \bar{D}_{k}}_{\text {baryon number violating }}
$$

R-parity

- In the SM baryon and lepton number are accidental symmetries
- The most general superpotential of the SUSY-SM contains baryon and lepton number violating terms:

$$
W \in \underbrace{\lambda_{i j k} L_{i} L_{j} \bar{E}_{k}+\lambda_{i j k}^{\prime} L_{i} Q_{j} \bar{D}_{k}+\kappa_{i} L_{i} H_{2}}_{\text {lepton number violating }}+\underbrace{\lambda_{i j k}^{\prime \prime} \bar{U}_{i} \bar{D}_{j} \bar{D}_{k}}_{\text {baryon number violating }}
$$

$L Q D$ and $U D D$ couplings lead to rapid proton decay

\rightarrow impose discrete symmetry: R-parity $R=(-1)^{3 B+L+2 S}$
$\rightarrow R_{\mathrm{SM}}=+$ and $R_{\mathrm{SUSY}}=-$

R-parity

R-parity conservation has dramatic phenomenological consequences:

- lightest SUSY particle (LSP) is absolutely stable \rightarrow dark matter candidate if also electrically neutral
- in collider experiments SUSY particles can only be produced in pairs
- in many models SUSY collider events contain missing E_{T}

SUSY breaking

Supersymmetry: mass $\left(e^{-}\right)=\operatorname{mass}\left(\tilde{e}_{L, R}^{-}\right)$
\rightarrow SUSY must be broken
No agreed model of supersymmetry breaking
\rightarrow phenomenological ansatz
Must preserve solution to hierarchy problem
\rightarrow "soft" SUSY breaking

SUSY breaking

Supersymmetry: mass $\left(e^{-}\right)=\operatorname{mass}\left(\tilde{e}_{L, R}^{-}\right)$
\rightarrow SUSY must be broken
No agreed model of supersymmetry breaking
\rightarrow phenomenological ansatz
Must preserve solution to hierarchy problem
\rightarrow "soft" SUSY breaking
Introduce

- gaugino masses $M_{1 / 2} \chi \chi: M_{1} \tilde{B} \tilde{B}, M_{2} \tilde{W} \tilde{W}, M_{3} \tilde{g} \tilde{g}$
- squark and slepton masses $M_{0}^{2} \phi^{\dagger} \phi$:

$$
m_{\tilde{e}_{L}}^{2} \tilde{e}_{L}^{\dagger} \tilde{e}_{L}, m_{\tilde{e}_{R}}^{2} \tilde{e}_{R}^{\dagger} \tilde{e}_{R}, m_{\tilde{u}_{L}}^{2} \tilde{u}_{L}^{\dagger} \tilde{u}_{L}, m_{\tilde{u}_{R}}^{2} \tilde{u}_{R}^{\dagger} \tilde{u}_{R} \text { etc. }
$$

- trilinear couplings $A_{i j k} \phi_{i} \phi_{j} \phi_{k}: A_{i j}^{e}\binom{\tilde{\nu}_{i}}{\tilde{e}_{j}}_{L} h_{1} \tilde{e}_{j R}$ etc.
- Higgs mass terms $B_{i j} \phi_{i} \phi_{j}: B h_{1} h_{2}$ etc.

SUSY breaking

MSSM w/o breaking: two additional parameters from Higgs sector Soft SUSY breaking

- $A_{i j}^{e}, A_{i j}^{d}, A_{i j}^{u} \quad \rightarrow 27$ real +27 phases
- $M_{\tilde{Q}}^{2}, M_{\tilde{U}}^{2}, M_{\tilde{D}}^{2}, M_{\tilde{L}}^{2}, M_{\tilde{E}}^{2} \rightarrow 30$ real +15 phases
- $M_{1}, M_{2}, M_{3} \quad \rightarrow 3$ real +1 phase
$\rightarrow 124$ parameters in the MSSM!
(but strong constraints from FCNS's, flavour mixing and CP violation)

SUSY breaking

MSSM w/o breaking: two additional parameters from Higgs sector Soft SUSY breaking

- $A_{i j}^{e}, A_{i j}^{d}, A_{i j}^{u} \quad \rightarrow 27$ real +27 phases
- $M_{\tilde{Q}}^{2}, M_{\tilde{U}}^{2}, M_{\tilde{D}}^{2}, M_{\tilde{L}}^{2}, M_{\tilde{E}}^{2} \rightarrow 30$ real +15 phases
- $M_{1}, M_{2}, M_{3} \quad \rightarrow 3$ real +1 phase
$\rightarrow 124$ parameters in the MSSM!
(but strong constraints from FCNS's, flavour mixing and CP violation)
Simple framework constrained MSSM:
breaking is universal at GUT scale
- universal scalar masses: $M_{\tilde{Q}}^{2}, M_{\tilde{U}}^{2}, M_{\tilde{D}}^{2}, M_{\bar{L}}^{2}, M_{\tilde{E}}^{2} \rightarrow M_{0}^{2}$ at $M_{\text {GUT }}$
- universal gaugino masses: $M_{1}, M_{2}, M_{3} \rightarrow M_{1 / 2}$ at $M_{\text {GUT }}$
- universal trilinear couplings $A_{i j}^{e}, A_{i j}^{d}, A_{i j}^{u} \rightarrow A \cdot h_{i j}^{e}, A \cdot h_{i j}^{d}, A \cdot h_{i j}^{u}$ at M_{GUT}
$\rightarrow 6$ additional parameters: $M_{0}, M_{1 / 2}, A, B, \mu, \tan (\beta)$

SUSY mass spectrum

In QFT the (s)particle masses "run": $\frac{d M_{i}(\mu)}{d \ln \mu^{2}}=\gamma_{i} M_{i}$

SUSY mass spectrum

In QFT the (s)particle masses "run": $\frac{d M_{i}(\mu)}{d \ln \mu^{2}}=\gamma_{i} M_{i}$

SUSY mass spectrum

In QFT the (s)particle masses "run": $\frac{d M_{i}(\mu)}{d \ln \mu^{2}}=\gamma_{i} M_{i}$

Radiative EWK symmetry breaking

- RGE drives $\left(\mu^{2}+m_{H_{u}^{2}}\right)$ negative \rightarrow EWK symmetry breaking
- Masses of W and Z bosons fix B and $|\mu|$
- cMSSM has $41 / 2$ parameters:

$$
M_{0}, M_{1 / 2}, A, \tan (\beta) \text { and } \operatorname{sign}(\mu)
$$

Mixing

After $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ breaking, mixing will occur between any two or more fields which have the same color, charge and spin

- $\left(\tilde{W}^{ \pm}, \tilde{H}^{ \pm}\right) \rightarrow \tilde{\chi}_{i=1,2}^{ \pm}$: charginos
- $\left(\tilde{B}, \tilde{W}^{3}, \tilde{H}_{1,2}^{0}\right) \rightarrow \tilde{\chi}_{i=1,2,3,4}^{0}$: neutralinos
- $\left(\tilde{t}_{L}, \tilde{t}_{R}\right) \rightarrow \tilde{t}_{1,2}$ etc.: sfermion mass eigenstates

Mixing

After $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ breaking, mixing will occur between any two or more fields which have the same color, charge and spin

- $\left(\tilde{W}^{ \pm}, \tilde{H}^{ \pm}\right) \rightarrow \tilde{\chi}_{i=1,2}^{ \pm}$: charginos
- $\left(\tilde{B}, \tilde{W}^{3}, \tilde{H}_{1,2}^{0}\right) \rightarrow \tilde{\chi}_{i=1,2,3,4}^{0}$: neutralinos
- $\left(\tilde{t}_{L}, \tilde{t}_{R}\right) \rightarrow \tilde{t}_{1,2}$ etc.: sfermion mass eigenstates

Note:

- mixing involves various SUSY parameters
\rightarrow cross sections and branching ratios become model dependent
- sfermion mixing $\propto m_{f}$
\rightarrow large only for 3rd generation $\left(\tilde{t}_{1,2}, \tilde{\tau}_{1,2}\right)$

Outline

- The supersymmetric harmonic oscillator
- Motivation for SUSY: Symmetry \& the hierarchy problem
- The MSSM
- SUSY searches

Summary of SUSY searches so far. . .

Summary of SUSY searches so far. . .

... but let's see what to expect in 2011 \& 2012...

Outline

- The supersymmetric harmonic oscillator
- Motivation for SUSY: Symmetry \& the hierarchy problem
- The MSSM
- SUSY searches
- indirect searches through quantum fluctuations
- direct searches at colliders

Indirect SUSY searches

Wealth of precision measurements
from B / K physics, ($g-2$), astrophysics (DM) and collider limits
\rightarrow constraints on certain SUSY masses
e.g. through anomalous magnetic moment $(g-2)$

Indirect SUSY searches: $(g-2)_{\mu}$

Hamiltonian for interaction of μ-spin with external magnetic field

$$
\mathcal{H}=g_{\mu} \frac{e}{2 m_{\mu}} \vec{S}_{\mu} \cdot \vec{B}
$$

with $g_{\mu}=2$ in leading order

Loop-corrections modify the interaction of the μ with the electromagnetic field

$$
\Rightarrow\left(\frac{g-2}{2}\right)_{\mathrm{QED}}=\frac{\alpha}{2 \pi}=0.00116114
$$

Indirect SUSY searches: $(g-2)_{\mu}$

There are additional diagrams in supersymmetric QED, e.g.
which is given by

$$
\begin{aligned}
I=\int & \frac{d^{4} k}{(2 \pi)^{4}}(i e \sqrt{2}) P_{R} \frac{1}{k-M_{\tilde{\gamma}}} P_{L}(i e \sqrt{2}) \frac{i}{\left(p^{\prime}-k\right)^{2}-m_{\tilde{\mu}_{L}}^{2}} \\
& \times(i e)\left(p^{\prime}+p-2 k\right)^{\nu} \frac{i}{(p-k)^{2}-m_{\tilde{\mu}_{L}}^{2}}
\end{aligned}
$$

After a short calculation (using standard QED techniques) one finds

$$
\left(\frac{g-2}{2}\right)_{\mathrm{SQED}}=-\frac{m_{\mu}^{2} e^{2}}{8 \pi^{2}} \int_{0}^{1} d x \frac{x^{2}(1-x)}{m_{\mu}^{2} x^{2}+\left(m_{\tilde{\mu}_{L}}^{2}-M_{\tilde{\gamma}}^{2}-m_{\mu}^{2}\right) x+M_{\tilde{\gamma}}^{2}}
$$

Indirect SUSY searches: $(g-2)_{\mu}$

In the limit $m_{\tilde{\mu}_{\llcorner }} \gg M_{\tilde{\gamma}}, m_{\mu}$ we find

$$
\left(\frac{g-2}{2}\right)_{\mathrm{SQED}}=-\frac{\alpha}{6 \pi} \frac{m_{\mu}^{2}}{m_{\tilde{\mu}_{L}}^{2}}
$$

- SUSY contribution decouples rapidly for $m_{\tilde{\mu}_{L}} \gg m_{\mu}$
- SUSY contribution $\propto m_{f} \rightarrow$ effects in $(g-2)_{e}$ suppressed

Including mixing:
\rightarrow dependence on further SUSY parameters $(A$ and $\tan \beta$)

Indirect SUSY searches

\rightarrow CMSSM fit to B, K and EWK observables, $(g-2)_{\mu}$ and Ω_{DM}

Indirect SUSY searches

\rightarrow CMSSM fit to B, K and EWK observables, $(g-2)_{\mu}$ and Ω_{DM}

Indirect SUSY searches

\rightarrow CMSSM fit to B, K and EWK observables, $(g-2)_{\mu}$ and Ω_{DM}

- global fits point to light sparticle spectrum with $\tilde{m}<1 \mathrm{TeV}$
- current data cannot constrain more general SUSY models

Indirect SUSY searches

\rightarrow CMSSM fit without $(g-2)_{\mu}$ and Ω_{DM}

- prediction of light SUSY spectrum rests on $(g-2)_{\mu}$ and Ω_{DM}

SUSY particle production at the LHC

SUSY particles would be produced at the LHC via QCD processes

SUSY particle production at the LHC

SUSY particles would be produced at the LHC via QCD processes

$\rightarrow \sigma \approx 100 \mathrm{fb}$ for $m \approx 1000 \mathrm{GeV}$ at $\sqrt{S}=7 \mathrm{TeV}$

SUSY particle production at the LHC

SUSY particles would be produced at the LHC via QCD processes

$\rightarrow \sigma \approx 2.5 \mathrm{pb}$ for $m \approx 1000 \mathrm{GeV}$ at $\sqrt{S}=14 \mathrm{TeV}$

SUSY searches at hadron colliders

\rightarrow Powerful MSSM signature at the LHC: cascade decays with $E_{\mathrm{T}, \text { miss }}$

SUSY searches at hadron colliders

\rightarrow Powerful MSSM signature at the LHC: cascade decays with $E_{\mathrm{T}, \text { miss }}$

Generic signature for many new physics models which address

- the hierarchy problem
- the origin of dark matter
\rightarrow predict spectrum of new particles at the TeV -scale with weakly interacting \& stable particle (\leftarrow discrete parity)

Squark and gluino searches at the LHC

Atlas limits $\left(165 \mathrm{pb}^{-1}\right)$

$\rightarrow m_{\tilde{q}} \approx m_{\tilde{g}} \gtrsim 950 \mathrm{GeV}$

Direct SUSY searches at the LHC: expected limits

The LHC is probing the preferred region of SUSY parameter space

Direct SUSY searches at the LHC: expected limits

But what if we do not see any SUSY signal at the LHC?

Direct SUSY searches at the LHC: expected limits

We have considered the SUSY search in the 4 jets $+E_{T, \text { miss }}$ signature with $M_{\text {eff }}=\sum_{i} p_{T, i}+E_{T, \text { miss }}$

Effective Mass [GeV]

Direct SUSY searches at the LHC: expected limits

- The simulation of $M_{\text {eff }}$ is based on Herwig++, Delphes and NLO+NLL K-factors.

Direct SUSY searches at the LHC: expected limits

- The 4 jets $+E_{T, \text { miss }}$ signature is rather independent of $\tan \beta$ and A_{0}

$$
M_{0}=500, M_{1 / 2}=500
$$

Global SUSY fits with projected LHC exclusions

- Low-energy observables, DM and LHC exclusions with $2 \mathrm{fb}^{-1}$

Global SUSY fits with projected LHC exclusions

- Low-energy observables, DM and LHC exclusions with $2 \mathrm{fb}^{-1}$

Global SUSY fits with projected LHC exclusions

- Low-energy observables, DM and LHC exclusions with $7 \mathrm{fb}^{-1}$

Global SUSY fits with projected LHC exclusions

- what happens if we take out $(g-2)_{\mu}$ and Ω_{DM} ?

Global SUSY fits with projected LHC exclusions

- what happens if we take out $(g-2)_{\mu}$ and Ω_{DM} ?

Global SUSY fits with projected LHC exclusions

- LHC mass limits on squarks are rather model independent

Global SUSY fits with projected LHC exclusions: is there a tension?

\rightarrow LEOs prefer low mass scales (for non-coloured sector)
\rightarrow LHC prefers high mass scales (for coloured sector)
Is there a tension building up?

Global SUSY fits with projected LHC exclusions: is there a tension?

\rightarrow LEOs prefer low mass scales (for non-coloured sector)
\rightarrow LHC prefers high mass scales (for coloured sector)
Is there a tension building up?
Let us look at the best fit points:

	M_{0}	$M_{1 / 2}$	A_{0}	$\tan \beta$	χ^{2} / ndf
no LHC	77_{-31}^{+114}	333_{-87}^{+89}	426_{-735}^{+70}	13_{-8}^{+10}	$19 / 20$
$35 \mathrm{pb}^{-1}$	126_{-54}^{+189}	400_{-40}^{+109}	724_{-780}^{+720}	17_{-9}^{+14}	$20 / 21$
$1 \mathrm{fb}^{-1}$	235_{-103}^{+389}	601_{-63}^{+148}	627_{-779}^{+124}	31_{-18}^{+19}	$24 / 21$
$2 \mathrm{fb}^{-1}$	254_{-128}^{+456}	647_{-74}^{+157}	771_{-859}^{+1254}	30_{-19}^{+20}	$24 / 21$
$7 \mathrm{fb}^{-1}$	403_{-281}^{+436}	744_{-150}^{+142}	781_{-918}^{+1474}	43_{-33}^{+11}	$25 / 21$

\rightarrow even the CMSSM would "survive" the 2011/2012 LHC run
[Note: $a_{\mu}^{\text {SUSY }} \sim \operatorname{sgn}(\mu) \tan \beta M_{\text {SUSY }}^{-2}$ and $\Omega_{\text {DM }}$ require larger $\tan \beta$]

Comparison of global CMSSM fits with and without LHC exclusions

There has been a lot of activity recently, see e.g.
Allanach, arXiv:1102.3149 [hep-ph], Buchmueller et al., arXiv:1102.4585 [hep-ph], Bechtle et al., arXiv:1102.4693 [hep-ph], Allanach et al., arXiv:1103.0969 [hep-ph]

\rightarrow the analyses differ in detail, but there is good agreement overall

SUSY searches: Summary \& Conclusions

- CMSSM fits to B, K and EWK observables, $(g-2)_{\mu}$ and Ω_{DM}
- point to light sparticle spectrum with $\tilde{m}<1 \mathrm{TeV}$
- cannot constrain more general SUSY models
- upper limits on sparticle masses rest on $(g-2)_{\mu}$ and Ω_{DM}

SUSY searches: Summary \& Conclusions

- CMSSM fits to B, K and EWK observables, $(g-2)_{\mu}$ and Ω_{DM}
- point to light sparticle spectrum with $\tilde{m}<1 \mathrm{TeV}$
- cannot constrain more general SUSY models
- upper limits on sparticle masses rest on $(g-2)_{\mu}$ and Ω_{DM}
- The LHC is now probing the SUSY parameter space favoured by low-energy observables and DM
- It is possible to reconcile LE measurements with a possible non-discovery of SUSY in the 7 TeV run, even in very constrained models like the CMSSM.
- LHC searches mostly constrain the coloured sparticle sector and can push squark and gluino mass limits up to about 1.5 TeV in 2011/2012.

