General gauge mediation in higher dimensions

Moritz McGarrie

NEXT Workshop, July 2011

Based on

arXiv:1004.3305 M.M., Rodolfo Russo arXiv:1009.0012 M.M. arXiv:1009.4696 M.M., Daniel Thompson arXiv:1101.5158 M.M.

Moritz McGarrie (Queen Mary, London)

General gauge mediation in 5d

< ③ → < ≧ → < ≧ → ≧ < つ Q ○
</p>

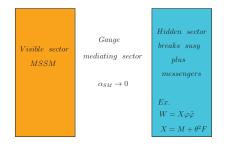
NEXT Workshop, July 2011 1 / 25

Outline

- Review GGM
- **2** Extend GGM to 5D on an interval $R^{1,3} \times S^1/\mathbb{Z}_2$
- Motivate duality: the two site model 3 as vector meson dominance
- Extend to a slice of AdS space
- Conclude

3

General gauge mediation (Meade, Seiberg, Shih)



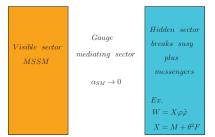
- We require hidden-visible sector decoupling as $\alpha_{SM} \rightarrow 0$
- Work perturbatively in α_{SM}
- Characteristic scales M and F
- Let's use $W = X \varphi \tilde{\varphi}$ as our benchmark model

Moritz McGarrie (Queen Mary, London)

A B K A B K NEXT Workshop, July 2011

3

General gauge mediation (Meade, Seiberg, Shih)



- We require hidden-visible sector decoupling as $\alpha_{SM} \rightarrow 0$
- Work perturbatively in α_{SM}
- Characteristic scales M and F
- Let's use $W = X \varphi \tilde{\varphi}$ as our benchmark model

Motivations:

extract soft masses, explore strong coupling, apply dualities, model dependent from mode independent features? ,....

A B K A B K

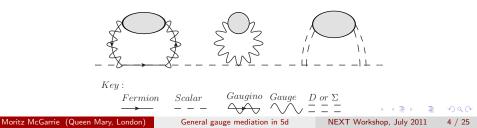
General gauge mediation

$$V_{WZ} = \theta \sigma^{\mu} \bar{\theta} A_{\mu} + i \theta^{2} \bar{\theta} \bar{\lambda} - i \bar{\theta}^{2} \theta \lambda + \frac{1}{2} \theta^{2} \bar{\theta}^{2} D$$
$$S_{int} = 2g_{SM} \int d^{4} \times \int d^{4} \theta \mathcal{J} V = g_{SM} \int d^{4} \times (JD - \lambda j - \bar{\lambda} \bar{j} - j^{\mu} A_{\mu})$$

• The effective Lagrangian at order g^2 leads to gaugino masses.

$$\begin{split} \delta \mathcal{L}_{eff} = & -g^2 \tilde{\mathcal{C}}_{1/2}(0) \lambda \sigma^{\mu} \partial_{\mu} \bar{\lambda} - \frac{g^2}{4} \tilde{\mathcal{C}}_1(0) F_{\mu\nu} F^{\mu\nu} + \frac{g^2}{2} \tilde{\mathcal{C}}_0(0) D^2 \\ & - \frac{g^2}{2} (M \tilde{B}_{1/2}(0) \lambda \lambda + c.c.) + \dots \end{split}$$

- One loop effects lead to sfermion masses at order g⁴
- \tilde{C}_s are Fourier transforms of the space-time current correlators.
- sfermion mass diagrams:



General gauge mediation (5D)

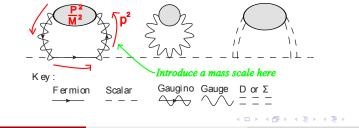
• For a given hidden sector we get a supertraced combination of current correlators

$$[3\tilde{C}_1(p^2/M^2) - 4\tilde{C}_{1/2}(p^2/M^2) + \tilde{C}_0(p^2/M^2)] = \Omega(p^2/M^2)$$

• Even for a perturbative hidden sector this is still a function that must be expanded

• Expanding in
$$\frac{M^2}{p^2} \rightarrow 0$$
 leads to "Gauge mediation" $+O(1/p^2)$

- Expanding in $\frac{p^2}{M^2} \rightarrow 0$ leads to "Gaugino mediation" $+O(p^2)$
- We should suppress the momenta in the outer loop of these diagrams to obtain "Gaugino mediation"
- To suppress the loop momenta p^2 we need to introduce a mass scale in the game.



Moritz McGarrie (Queen Mary, London)

General gauge mediation in 5d

Add an extra dimension

- If we want...
 - suppressed scalar soft masses
 - a geometric interpretation visible-hidden sector decoupling $\alpha_{SM} \rightarrow 0$
 - Analogues of Vector Meson Dominance of QCD
- ...then it is convenient to add an extra dimension
- So let's look at three typical examples of adding an extra dimension:
 - Flat S¹/ℤ₂
 - Two site model
 - Warped S^1/\mathbb{Z}_2

General gauge mediation in 5d

5d $\mathcal{N} = 1$ Super Yang Mills

$$\begin{split} S_{5D}^{SYM} &= \int d^5 x \operatorname{Tr} \left[-\frac{1}{2} (F_{MN})^2 - (D_M \Sigma)^2 - i \bar{\lambda}_i \gamma^M D_M \lambda^i + (X^a)^2 + g_5 \, \bar{\lambda}_i [\Sigma, \lambda^i] \right] \\ SU(2)_R \quad X^a \quad , \quad a = 1, 2, 3. \quad \lambda^i = \begin{pmatrix} \lambda_{L\alpha}^i \\ \bar{\lambda}_{R\alpha}^{i\alpha} \end{pmatrix}, \quad i = 1, 2. \text{ with } \lambda^i = \epsilon^{ij} C \bar{\lambda}_j^T \end{split}$$

Compactify on $R^{1,3} imes S^1/\mathbb{Z}_2$ reduces to 4d $\mathcal{N}=1$ SYM with

$$\begin{array}{l} (+ \ parity) \quad V = - \ \theta \sigma^{\mu} \overline{\theta} A_{\mu} + i \overline{\theta}^{2} \theta \lambda_{L} - i \theta^{2} \overline{\theta} \overline{\lambda}_{L} + \frac{1}{2} \overline{\theta}^{2} \theta^{2} D \\ (- \ parity) \quad \Phi = \frac{1}{\sqrt{2}} (\Sigma + i A_{5}) + \sqrt{2} \theta (-i \sqrt{2} \lambda_{R}) + \theta^{2} F \end{array}$$

where the identifications between 5d and 4d fields are

$$D = (X^3 - D_5 \Sigma)$$
 $F = (X^1 + iX^2).$

The fixed points are $\delta(x_5)$ and $\delta(x_5 - \ell)$

Moritz McGarrie (Queen Mary, London)

General gauge mediation in 5d

3

V seitle brane karrier de la construction karrie

Bulk propagator

Example of Bulk propagator from the fermions with kinetic terms ۲

$$\sum_{n} \bar{\lambda}_{L} \sigma^{\mu} \partial_{\mu} \lambda_{L} + \sum_{n} \bar{\lambda}_{R} \sigma^{\mu} \partial_{\mu} \lambda_{R}$$

• using
$$\lambda(x, y)_L = \lambda(x)_L \sum_n \frac{1}{\sqrt{\ell}} \cos(\frac{n\pi y}{\ell})$$

 $\langle \bar{\lambda}(x, y) \lambda(0, y') \rangle = \frac{1}{\ell} \sum_{n,m} \frac{\delta_{nm}}{\rho^2} \cos(\frac{n\pi y}{\ell}) \cos(\frac{m\pi y'}{\ell})$

• A geometric sum of mass insertions from $\sum_{n} \lambda_L \partial_5 \lambda_R + \sum_{n} \overline{\lambda}_L \partial_5 \overline{\lambda}_R$ gives $\langle \bar{\lambda}(x,y)\lambda(0,y')\rangle = \frac{1}{\ell} \sum \frac{Cos(\frac{n\pi y}{\ell})Cos(\frac{n\pi y'}{\ell})}{p^2 + (\frac{n\pi}{\ell})^2}$

From "brane to brane" gives ٠

$$\langle \bar{\lambda}(x,\mathbf{0})\lambda(\mathbf{0},\boldsymbol{\ell})\rangle = \frac{1}{\ell}\sum_{n}\frac{(-1)^{n}}{p^{2}+(\frac{n\pi}{\ell})^{2}}$$

Moritz McGarrie (Queen Mary, London)

sfermion mass formulas

 For δ(x₅) like fixed points translation invariance is broken → The currents couple to all kk modes.

$$m_{\tilde{t}}^{2} = -g^{4} \int \frac{d^{4}p}{(2\pi)^{4}} p^{2} \sum_{n} \frac{(-1)^{n}}{p^{2} + (\frac{n\pi}{\ell})^{2}} \sum_{\hat{n}} \frac{(-1)^{\hat{n}}}{p^{2} + (\frac{\hat{n}\pi}{\ell})^{2}} \Omega(p^{2}/M^{2})$$

Matsubara summation of full kk tower

$$m_{\tilde{f}}^2 = -g^4 \int \frac{d^4p}{(2\pi)^4} \frac{1}{p^2} (\frac{p\ell}{Sinh(p\ell)})^2 \Omega(p^2/M^2)$$

only zero modes. 4d limit

$$m_{\tilde{f}}^2 = -g^4 \int \frac{d^4p}{(2\pi)^4} \frac{1}{p^2} \Omega(p^2/M^2)$$

• zero mode and first mode $m_1^2 = (\frac{\pi}{\ell})^2$ vector meson dominated

$$m_{\tilde{f}}^2 = -g^4 \int \frac{d^4p}{(2\pi)^4} \frac{1}{p^2} (\frac{m_1^2}{p^2 + m_1^2})^2 \Omega(p^2/M^2)$$

Essentially a form factor $f(p^2)$ times the 4d GGM answer.

Moritz McGarrie (Queen Mary, London)

Energy Scales

 ${\small ullet}$ Let's use an example of massless mode and +1 kk mode

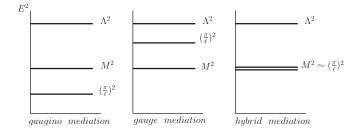
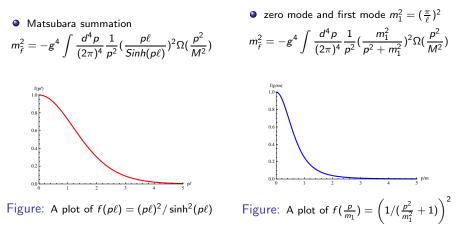


Figure: Relative mass scales that determine the sfermion mass

- If we introduce 1 kk mode mass scale $m_1 = (\frac{\pi}{\ell})$ (or vev of a Higgs)
- We find different regimes for the scalar soft masses
- We cannot reach hybrid mediation using a Taylor expansion in p²

Full kk model compared to minimal model

So how do the form factor behave?



 Keypoint: The simpler model of 1kk mode captures the same essential physics as the full summation

Moritz McGarrie (Queen Mary, London)

General gauge mediation in 5d

NEXT Workshop, July 2011 11 / 25

Deconstruction of general gauge mediation

• The key point: This model is essentially the same as the truncated kk model of the 5d case.

$$m_{\tilde{f}}^2 = -g^4 \int \frac{d^4p}{(2\pi)^4} \frac{1}{p^2} (\frac{m_1^2}{p^2 + m_1^2})^2 \Omega(p^2/M^2)$$

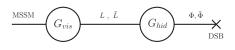


Figure: Two site lattice model

- $W = X\Phi\bar{\Phi} + K(L\bar{L} v^2)$
- kk eigenstates $\tilde{A}^0_{\mu}, \tilde{A}^1_{\mu}$

• masses
$$m_0^2 = 0, m_1^2 = 2v\sqrt{g_1^2 + g_2^2}$$

 diagonalise lattice eigenstates to mass eigenstates

•
$$m_k^2 = 8g^2 v^2 \sin^2(\frac{k\pi}{N})$$
 $k = 0, 1, ..., N-1$

- Bosonic sector is vector meson dominance model
- Can be realised from Seiberg duality dynamically (1008.2215)
- Suggests extensions to AdS

3

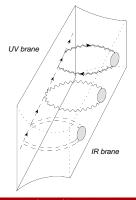
Warped general gauge mediation

This setup allows for any susy breaking sector to be located on the IR brane

$$ds^2 = e^{-2k|y|} \eta_{\mu
u} dx^{\mu} dx^{
u} + dy^2$$

$$V = -\theta\sigma^{a}\bar{\theta}\delta^{\mu}_{a}A_{\mu} + i\bar{\theta}^{2}\theta e^{-\frac{3}{2}k|y|}\lambda - i\theta^{2}\bar{\theta}e^{-\frac{3}{2}k|y|}\bar{\lambda} + \frac{1}{2}\bar{\theta}^{2}\theta^{2}e^{-2\sigma}D$$

$$V = \sum_{n} \frac{1}{\sqrt{2\ell}} V_n(x) f_n^2(y)$$



$$S_{int} = 2g_5 \int d^5 x e^{-2k|y|} \int d^4\theta \mathcal{J} V \delta(y-\ell)$$

- An off-shell supersymmetric action using "theta-warping" $\tilde{\theta} = e^{-\frac{k|y|}{2}}\theta$, $e^a_{\mu}(x, y) = e^{-\sigma}\delta^a_{\mu}$
- The mass scale we introduce is k
- $m_n \sim (n \frac{1}{4})\pi k e^{-k\ell}$
- Mass scales are naturally hierarchically small eg $\hat{F}=e^{-2k\ell}F$, $\hat{M}=e^{-k\ell}M$

NEXT Workshop, July 2011

A B K A B K

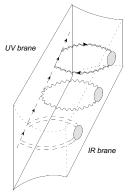
Warped general gauge mediation

• propagator

$$m_{\tilde{t}}^{2} = -g^{4} \int \frac{d^{4}p}{(2\pi)^{4}} \tilde{G}(0,\ell) \tilde{G}(0,\ell) p^{2} \Omega(p^{2}/M^{2})$$

$$\tilde{G}(0,\ell) = \frac{1}{2\ell} \sum_{n} \frac{f_{n}^{(2)}(y) f_{n}^{(2)}(y')}{p^{2} + m_{n}^{2}}$$

• eigenmasses
$$m_n \sim n \pi k e^{-k t}$$



- 4d limit
- only zero modes mediate the message
- $m_{\lambda} \sim (\frac{\alpha}{4\pi}) \frac{\hat{F}}{\hat{M}}$
- $m_{\tilde{f}}^2 \sim (rac{lpha}{4\pi})^2 |rac{\hat{F}}{\hat{M}}|^2$

warped eigenfunctions $f_n^2(y)$.

- 5d limit
- all modes contribute
- $m_{\lambda} \sim (\frac{\alpha}{4\pi}) \frac{\dot{F}}{\dot{M}}$

•
$$m_{\tilde{f}}^2 \sim (\frac{\alpha}{4\pi})^2 e^{-k\ell} f(k,\ell,M) |\frac{\hat{F}}{\hat{M}}|^2$$

(B) < (B)</p>

Moritz McGarrie (Queen Mary, London)

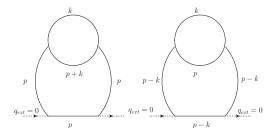
NEXT Workshop, July 2011

14 / 25

3

Accessing hybrid mediation

Labelling momenta in two loop diagrams



- The first case is typical for GGM. The second case mixes mass scales of the inner loop with the outer loop.
- Can be solved exactly for the case of 1kk mode below the UV cutoff e.g. minimal gaugino mediation
- (As long as one specifies a perturbative hidden sector eg $W = X \varphi \tilde{\varphi}$)

$$m_{\tilde{f}}^2 = (rac{lpha}{4\pi})^2 (rac{F}{M})^2 S(x,y) \ , \ x = rac{F}{M^2} \ , \ y = rac{m_1}{M}$$

(This formula S(x, y) is due to R.Auzzi & A.Giveon arXiv:1011.1664)

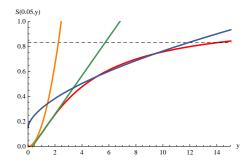
Moritz McGarrie (Queen Mary, London)

General gauge mediation in 5d

"The gaugino mediation variations"

$$m_{\tilde{f}}^{2} = -g^{4} \int \frac{d^{4}p}{(2\pi)^{4}} \frac{1}{p^{2}} (\frac{m_{1}^{2}}{p^{2} + m_{1}^{2}})^{2} \Omega(p^{2}/M^{2})$$
$$m_{\tilde{f}}^{2} = (\frac{\alpha}{4\pi})^{2} (\frac{F}{M})^{2} \frac{S(x, y)}{y}, \quad x = \frac{F}{M^{2}} \quad , \quad y = \frac{m_{1}}{M}$$

- 4d limit (Dashed)
 S = constant
- Gaugino mediation limit/5d limit (Orange) $S \simeq y^2 \simeq \frac{1}{(M\ell)^2}$
- Hybrid regimes
 (Green) S ≃ y ≃ 1/(Mℓ)
- or (Blue) $S \simeq y^{1/n} \simeq \frac{1}{(M\ell)^{1/n}}$



• Key message: We can have various scalar mass suppressions not just the gaugino mediated limit.

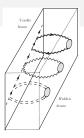
Moritz McGarrie (Queen Mary, London)

General gauge mediation in 5d

NEXT Workshop, July 2011 16 / 25

3

The End!

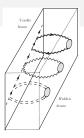


summary messages

- To achieve suppressed scalar soft masses we should introduce a mass scale \simeq extra dimension.
- These models don't have to lead to "gaugino mediation"
- plenty of open/speculative questions....can we determine the UV theory from vector mesons? How much of AdS/QCD can be applied to susy breaking? Do more exotic things like black holes in AdS tell us something interesting about susy breaking or the hidden sector?

< 3 > < 3 >

The End!



summary messages

- To achieve suppressed scalar soft masses we should introduce a mass scale \simeq extra dimension.
- These models don't have to lead to "gaugino mediation"
- plenty of open/speculative questions....can we determine the UV theory from vector mesons? How much of AdS/QCD can be applied to susy breaking? Do more exotic things like black holes in AdS tell us something interesting about susy breaking or the hidden sector?

Thanks for listening

Moritz McGarrie (Queen Mary, London)

General gauge mediation in 5d

Appendices follow

Moritz McGarrie (Queen Mary, London)

General gauge mediation in 5d

NEXT Workshop, July 2011 18 / 25

(日) (四) (三) (三) (三)

Matsubara summation

"brane to brane" propagator:

$$S = \sum_{n} h(k_5) = \frac{1}{2\ell} \sum_{n} (-1)^n \frac{1}{k^2 + (k_5)^2}$$

- We would like to remove the sum on k₅ so we can carry out an integration on only the k² momenta.
- Replace the sum with a complex auxiliary function g(ik₅), that has poles at the sum values:

$$g(z) = rac{eta}{e^{(eta z)} - 1}$$
, $eta = 2\ell$

We apply the residue theorem

$$\oint \frac{dk_5}{2\pi}g(z)h(z) = \oint \frac{dk_5}{2\pi} \frac{1}{2\ell} \frac{2\ell}{e^{i2k_5\ell} - 1} \frac{e^{ik_5\ell}}{k^2 + (k_5)^2} = \sum \operatorname{Res}[g(z)h(iz)]|_{z=ik_5}$$

• choose a contour that only captures the poles at $k_5 = \pm ik$

$$S = \frac{1}{k \operatorname{Sinh} k \ell}$$

BACK

3

イロト イポト イヨト イヨト

Higgs mechanism

• kk masses are generated by a super Higgs mechanism with $\partial_5 = vev$ (Ex. U(1)):

$$\begin{split} &-\frac{1}{4}F_{MN}F^{MN}=-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}-\frac{1}{2}F_{\mu5}F^{\mu5}\\ &=-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}-\frac{1}{2}(\partial_{\mu}A_{5}\partial^{\mu}A^{5}-2\partial_{\mu}A_{5}\partial^{5}A^{\mu}+\partial_{5}A_{\mu}\partial^{5}A^{\mu}) \end{split}$$

Moritz McGarrie (Queen Mary, London)

NEXT Workshop, July 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Generating the KK tower

• The kinetic terms for the scalar linking fields $D_{\mu} = \partial_{\mu} + igA_{i\mu} - igA_{i+1\mu}$

$$\sum_{i} (D_{\mu} Q_{i})^{\dagger} D^{\mu} Q_{i} = \sum_{i} (D_{\mu} Q_{i})^{\dagger} D^{\mu} Q_{i}$$

Expand around the vev (put in by hand)

$$Q_{i\alpha}^{\beta} = v\delta_{\alpha}^{\beta} + \phi_{i\alpha}^{\beta}$$

This generates

$$\mathcal{L} \supset g^2 v^2 \sum_{i=0}^{N-1} (A_i^{a\mu} - A_{i+1}^{a\mu})^2 \quad ext{or} \quad rac{1}{2} A_{i\mu}^a \mathcal{M}_{ijab}^2 A_j^{b\mu}$$

Diagonalising this mass matrix gives

$$ilde{A}_k = rac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{i(rac{2\pi jk}{N})} A_j$$

• with
$$m_k^2 = 8g^2 v^2 \sin^2(\frac{k\pi}{N})$$
 $k = 0, 1, ..., N-1$

Moritz McGarrie (Queen Mary, London)

Lattice propagator

• Gauge field mixed space propagator from lattice site k to q:

$$\langle p^2; k, q \rangle = \langle V(x)_k V(0)_q \rangle = \frac{\langle V_k V_q \rangle}{p^2}$$

• insert a closure relation $\mathbb{I} = \sum_{j} |\tilde{V}_{j}\rangle \langle \tilde{V}_{j}|$ with eigenmasses $m_{j}^{2} = 8g^{2}v^{2}\sin^{2}(\frac{j\pi}{N})$ • then use $\langle \tilde{V}_{j}|V_{q}\rangle = \frac{1}{\sqrt{N}}e^{i(\frac{2\pi jk}{N})}$ to obtain

$$\langle p^2; k, q \rangle = \frac{1}{p^2} \sum_j \langle V_k | \tilde{V}_j \rangle \langle \tilde{V}_j | V_q \rangle = \frac{1}{N} \sum_j e^{-i(\frac{2\pi j k}{N})} e^{i(\frac{2\pi j q}{N})} \frac{1}{p^2}$$

then a geometric sum of mass insertions gives

$$\langle p^2; k, q \rangle = \frac{1}{N} \sum_j e^{-i(\frac{2\pi jk}{N})} e^{i(\frac{2\pi jq}{N})} \frac{1}{p^2 + m_j^2}$$

BACK

Moritz McGarrie (Queen Mary, London)

Warped eigenfunctions

$$ds^2 = e^{-2\sigma} \eta_{\mu\nu} dx^\mu dx^\nu + dy^2$$

• The vector superfield equation of motion is

$$[e^{2\sigma}\eta^{\mu\nu}\partial_{\mu}\partial_{\nu} + e^{2\sigma}\partial_5(e^{-2\sigma}\partial_5)]V(x,y) = 0$$

•
$$V = \sum_{n} \frac{1}{\sqrt{2\ell}} V_n(x) f_n^{(2)}(y)$$
$$f_n^{(s)}(y) = \frac{e^{s\sigma/2}}{N_n} \left[J_1(\frac{m_n e^{\sigma}}{k}) + b(m_n) Y_1(\frac{m_n e^{\sigma}}{k}) \right] \quad , \quad N_n \simeq \frac{1}{\sqrt{m_n e^{-k\ell} \pi \ell}}$$

Orthonormality ۲

$$\frac{1}{2\ell}\int_{-\ell}^{\ell}e^{(2-s)\sigma}f_n^{(s)}(y)f_m^{(s)}(y)dy=\delta_{nm}$$

• Expanding $f_n^{(2)}(y)$ for large masses give

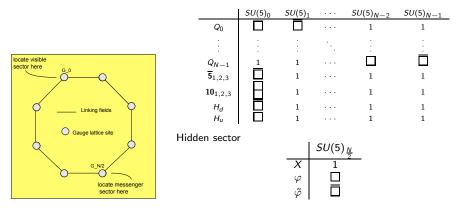
$$f_n^{(s)}(0)f_n^{(s)}(\ell)\simeq 4(k\ell)(-1)^n e^{-k\ell/2}$$

BACK

Ξ.

Deconstruction of general gauge mediation

- Each lattice site is a standard model parent gauge group SU(5)
- Lattice sites are linked together using bifundamental chiral superfields



• $W = X\varphi\tilde{\varphi}$

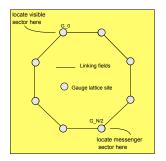
(B)

3

Deconstruction of general gauge mediation

Key features:

$$m_{\tilde{f}}^2 = -g^4 \int \frac{d^4p}{(2\pi)^4} p^2 \langle p^2; 0, \frac{N}{2} \rangle \langle p^2; 0, \frac{N}{2} \rangle \Omega(p^2/M^2)$$



- N lattice sites, spacing $a = \frac{1}{\sqrt{2gv}}$. $\ell = Na$
- diagonalise lattice eigenstates to mass eigenstates

•
$$m_k^2 = 8g^2v^2\sin^2(\frac{k\pi}{N})$$
 $k = 0, 1, ..., N-1$

$$\tilde{V}_k = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{i(\frac{2\pi jk}{N})} V_j$$

mixed space propagator

$$\langle p^2; k, q \rangle = \frac{1}{N} \sum_{j=0}^{N-1} e^{-i(\frac{2\pi jk}{N})} e^{i(\frac{2\pi jq}{N})} \frac{1}{p^2 + m_j^2}$$