

LHCONE European design & implementation

Roberto Sabatino, DANTE

LHCONE Meeting, Washington, June 13-14 2011

Outline

- Overview European Approach
- Implementation status
- US setup and transatlantic connectivity for LHCONE
- Lessons learnt
- Conclusions

Overview European Approach

- Designed according to European user's requirements
 - European workshop on 5th April agreed way forward
- Set of Distributed Exchange Points based on GEANT infrastructure

Interconnection with Netherlight

Long-term solution Layout of (generic) Distributed Exchange

Prototype design & implementation

- Logically identical to long term solution but
 - smaller in scope (# of sites connected)
 - Different technology, in core and in NREN connectors
 - Shared vs dedicated capacity
- Use VPLS technology on existing Juniper T1600 routers to emulate a distributed LAN
- Make use of existing shared (IP) capacity, with logical separation from general R&E IP traffic (with separate monitoring)
 - Confidence there is enough capacity on existing backbone links
 - 40Gbps CH-DE-AMS
 - 20Gbps NL-UK-FR-CH and IT-CH
 - May upgrade links if demonstrated necessary

Access options for NRENs to LHCONE

- During prototype
 - Via a VLAN or LSP on existing port
 - Via additional separate physical port
 - Use backup IP port
- Long Term
 - Via a VLAN on main access (e.g if main access is > 10Gbps)
 - Via a VLAN on additional access
 - ...other...TBD

European prototype overview

Services supported in prototype

- P2mp and static p2p services
- Dynamic services not yet available. Expected 2012.
 - GEANT-NREN pilot started now
- perfSONAR release available May 2011
- Note: p2p circuits (with BW guarantees) are already available via GEANTPlus.
 - No need to establish new infrastructure
 - May need to install additional capacity, depending on demand

Prototype costs within Europe

- Depending on how NREN aggregator networks (T2 clouds) connect, there may be an additional 10GE port in some locations
- We do not expect to have to add additional backbone capacity, for the prototype
 - There may be exceptions, depending on traffic growth
- Route Server

IMPLEMENTATION: LHCONE Setup in GEANT

LHCONE Setup in GEANT

- GEANT IP Network will be invisible to T2 sites (via LHCONE)
- All LHC connectors will be within the same IP subnet
- All sites should peer with all route servers
 - Looking for a workaround
- Technical service guidelines agreed with participants

LHCONE FR Prototype target architecture

We are also currently investigating if a VRF LITE implementation would be more appropriate

Germany

X-WiN and HEPPI (schematic)

HR: Heppi Router (P/PE) T2R: PE Router

normal X-Win core routers!

- green: inner core with 10GE
- all traffic in L3VPN
- Traffic flow HEP1<->HEP2 via HR
 - except if connected to same T2R
- additional Loopback interfaces on all routers that are part of HEPPI
 - serve as BGP next-hops in L3VPN
- separate OSPF process to distribute next-hops
- TE-Tunnels: OSPF not possible -> static routing for Loopbacks
- GN access as VLAN on existing 2x10GE channel

LHCONE tech workshop May 2011

Thomas Schmid, schmid@dfn.de

Seite 7

Timescale

- VPLS Implementation
 - Routers configured 10th June-11
 - Tests will be performed till 17th June-11
- Route Server Implementation
 - Route servers deployed 10th June-11
 - Tests will be performed till 17th June-11
- NREN Connections
 - NRENs will be able to connect LHC T2/3s from week starting 20th
 June-11
- Trans-Atlantic Connectivity
 - GEANT ready to connect on 20th June-11

Conclusions Intra European set-up

- Conforms to LHCONE architecture
- LHCONE "core" in Europe provided by a set of distributed exchange points in GEANT PoPs, interconnected to Netherlight
 - New equipment in 2012, with allocated capacity from 10G up to 100G
 - VPLS on existing Juniper T1600 for prototype. No need for additional capacity (bar possible exceptions)
- NREN aggregator networks
- Costs:
 - Minimal during prototype
- Prototype implementation well under way

Transatlantic connectivity - general

Distribution of European Resources for experiments (from WSLCG)

Transatlantic – p2mp service

Prototype lesson N.1: Architectural issues

- L2 architecture does not support multi-continent/region p2mp service well:
 - Loop avoidance
 - Resilience
 - NA Europe Asia or Asia NA Europe Or Europe Asia NA

- Bottom line issue to solve: avoid fragmentation of TA connectivity
 - LHCONE architegrure does not solve this issue for p2mp
 - It works for p2p
 - GEANT/ACE have made excellent progress on avoiding fragmentation for general R&E
 - Need to look again at L3 between regions

Conclusion

- Progress within Europe/GEANT on prototype implementation
- Initial proposal for T.A setup that meets the connectivity needs of the users (for the prototype, within its limitations)
 - Partnership between EU NREN funded connectivity and USLHCNET
 - Based on GEANT PoPs in Europe, US to choose PoPs in US
 - GEANT ready from June 20th
- Study lessons learnt from prototype, feed into next architecture iteration
 - Recognition of limitation of LHCONE architecture to support p2mp services
 - Start prototype with one path between EU-N.A
 - Review architecture
- Objectives & success criteria of prototype need to be clear