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Introduction

Motivation:

• Acceptance of SIS-18 was never measured

• Help in controlling beam. In particular important during high current opera-

tion within FAIR project

General Method:

• Transverse beam excitation with noise → Diffusion and growth of beam

width

• Existing method: Measure time from beginning of excitation until start of

beam loss when beam edge reaches acceptance.

• Need to know initial beam width
3
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Introduction

Determine acceptance of SIS-18 from time evolution of beam current.1

• Diffusion and growth of beam width due

to transverse beam excitation

• Beam loss when beam width exceeds

acceptance.

• Measure of beam current and evaluate it

by comparison with simulation results

Ta61+ at E = 100 MeV
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After sufficiently long time transverse beam shape and time evolution of beam

current become independent of initial beam shape.

1S. Sorge, G. Franchetti, and A. Parfenova, Phys. Rev. ST-AB 14, 052802 (2011). 4
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Introduction

Main experimental parameters

Circumference of SIS-18 C 216.72 m

Ion Ta61+

Initial particle number Np,0 ∼ 109

Working point, (νx, νy) (4.17, 3.29)

Energy E 100 MeV/u

RMS momentum spread σp ≈ 5.0 × 10−4

Nominal vertical chromaticity ξy,nat −1.4647

For the moment only vertical acceptance measured.
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Analytical beam loss model

• Increase of beam width and resulting particle loss is driven by diffusion.

• Diffusion: particle transport from phase space regions of high density to

those with low density ~j = −C∇f

where ~j, C, ∇, f defined in vertical phase space.

• Diffusion equation for particle distribution dependent only on emittance1:

∂f

∂t
=

(

dǫav

dt

)

∂

∂ǫ

(

ǫ
∂f

∂ǫ

)

– Needs to be solved for f(ǫ, t = 0) = f(ǫ), f(ǫ ≥ ǫlim, t) = 0.

– ǫav – averaged emittance, ǫlim – limiting emittance = acceptance.

1 D. A. Edwards and M. Syphers, “An introduction to the Physics of High Energy Accelerators”
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Analytical beam loss model

Solution to diffusion equation → series:

f(ǫ, t) =
∞
∑

n=1

cnJ0

(

λn

√

ǫ

ǫlim

)

exp

[

−
λ2

n

4

(

dǫav
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)

t

ǫlim

]
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Analytical beam loss model

Solution to diffusion equation → series:

f(ǫ, t) =
∞
∑

n=1

cnJ0

(
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√

ǫ
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)
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λ2
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t
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]

• Fortunately, λ1 is smallest zero of Bessel function. 1st term remains

f(ǫ, t) ∝ J0

(

λ1

√

ǫ

ǫlim

)

exp

[

−
λ2

1

4

(

dǫav

dt

)

t

ǫlim

]

and

Np(t) ∝ exp

[

−
λ2

1

4

(

dǫav

dt

)

t

ǫlim

]

when time sufficiently large.

• f is only solution if dǫav/dt = const → proof for white noise.
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Diffusion driven by white noise

• Search for time evolution of averaged or beam emittance

ǫav(t = nT0) =
1

Np

Np
∑

p=1

ǫp(nT0)

• Assume particle motion given by




yp,n+1

y
′

p,n+1



 = M ·





yp,n

y
′

p,n + ∆y
′

p,n





• Lattice represented by linear one turn map

M =





cos µ + α sin µ β sin µ

−1+α2

β
sin µ cos µ − α sin µ





with α, β – Twiss functions, µ = 2πν – phase advance per turn.

• Kicks ∆y
′

p,n uncorrelated with respect to turn and particle (white noise)
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Diffusion driven by white noise

Analytic expression for beam emittance

1. Beam emittance is linear function of time t = nT0:

ǫav(nT0) = ǫav,0 + nβσ2
∆y

′ ⇒
dǫav

dt

∣

∣

∣

t=nT0

=
βσ2

∆y
′

T0

= const

σ∆y
′: rms momentum kick strength.

2. Use this scheme for particle tracking:

Provides first benchmark of code.
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Diffusion driven by white noise

Beam emittance: tracking vs. analytic model

Conditions:

• White noise with

σ∆y
′ = 5 × 10−6 rad

• 2000 test particles

• ǫlim = 45 mm mrad
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Diffusion driven by white noise

Particle number: tracking vs. analytic model

Conditions:

• White noise with

σ∆y
′ = 5 × 10−6 rad

• 2000 test particles

• ǫlim = 45 mm mrad
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Tracking with realistic noise

Noise used in experiment:

• Generated by an exciter with

length l0 = 750 mm

vertical gap d0 = 70 mm

• Transverse RF voltage

U(t) = Ua sin [2πfCt + φ(t)] .

Carrier frequency: fC = νfrac/T0

electrode

beam

electrode

y

d0

E(t) = U(t) / d0

• φ(t) follows random bit sequence, where φ = 0 when bit status is 0 and

φ = π when bit status is 1, (“Pseudorandom phase shift signal”).

• Duration of a bit status is TS ∼ 100 T0.
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Tracking with realistic noise

Resulting power spectrum (for positive frequencies)

P (f) ∝
sin2[π(f − fC)/fS]

[(f − fC)/fS]2

with width fS = 1/TS,

which has to cover tune spread

arising from momentum spread.
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Usage of exciter voltage requires particle tracking → model shown before.

14



==0mm

Tracking with realistic noise

• Inclusion of tune shift due to momentum spread requires modification of M :

M =





cos µp + α sin µp β sin µp

−1+α2

β
sin µp cos µ − α sin µp





with phase advance of particle p: µp = 2πν(1 + ξδp)

• Momentum kick to all particles as function of turn number:

∆y
′
(n) =

e

muc2β2
0γ0

Z

A

Ual0

d0

sin [2πνfracn + φ0(n)] .

with

– Z, A charge state and mass number of ions

– Ua, l0, d0 voltage amplitude, and length and gap width of the exciter

– νfrac fractional part of the betatron tune 15
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Tracking with realistic noise

Unfortunately, exciter signal provides the same momentum kick to all particles

⇓

Coherent motion of all particles in phase space independent of particle density:

→ No diffusion, instead random oscillation of beam centre.
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Tracking with realistic noise

Unfortunately, exciter signal provides the same momentum kick to all particles

⇓

Coherent motion of all particles in phase space independent of particle density:

→ No diffusion, instead random oscillation of beam centre.

On the other hand,

• Momentum spread with σp

→ tune spread ∆νrms = σpξν

• If chromaticity ξ is sufficiently large,

oscillation of beam centre is damped

• Beam emittance ǫav becomes

linear function of time → Diffusion.
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Evaluation of experimental data

• Acceptance determined with trial-and-error procedure, i.e. calculate N(t)

with many different test acceptances, until it fits measured N(t)

• Evaluated measurements for E = 100 MeV/u, Ua = 29 V, and two fS.

• Obtained acceptance:

fS = 0.01/T0 (figure) :

ǫlim = 46 mm mrad

fS = 0.005/T0 :

ǫlim = 45 mm mrad
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Similar acceptance values for different conditions.
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Evaluation of experimental data

Error estimation: find upper limit for acceptance error

Distinguish between

1. Random errors:

• Lead to random deviations in measured current although machine settings

are not changed.

2. Systematic errors:

• Parameters used in evaluation are standard machine parameters or from

MAD-X calculations.

• They may deviate from parameters in the real synchrotron.
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Evaluation of experimental data

Error estimation: random errors

fS = 0.01/T0
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• Random errors

⇓

spread in curves for I(t)

• Search for upper limit for errors

• Spread always < 1 %, corresponds

to |∆ǫlim,random| < 1 mm mrad or

δǫlim,random :=
|∆ǫlim,random|

ǫlim

< 2 %
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Evaluation of experimental data

Error estimation: systematic errors

1. Assume maximum relative errors to estimate upper limit of acceptance error

Variable unperturbed value maximum relative error

X0 |∆X/X0|

βy 7.0 m 10 %

ξy −1.4647 10 %

σp 5 × 10−4 10 %

2. Add each error separately to the corresponding unperturbed value and use

trial-and-error procedure to find acceptance ǫlim(X + ∆X) so that N(t)

fits N(t) calculated with ǫlim(X).
21
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Evaluation of experimental data

Error estimation: systematic error in βy

Uncertainty due to ∆βy/βy can be predicted from analytic expression

ǫav(n) = ǫav,0 +
βy

Np

Np
∑

p=1

n−1
∑

k,l=0

cos[(k − l)µp]∆y
′

k∆y
′

l

because

ǫlim ∝
dǫav

dt
∝ βy.

⇓

∆ǫlim(∆βy)

ǫlim

= 0.1 for
∆βy

βy

= 0.1.
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Evaluation of experimental data

Error estimation: systematic error in βy

Uncertainty due to ∆βy/βy can be predicted from analytic expression

ǫav(n) = ǫav,0 +
βy

Np

Np
∑

p=1

n−1
∑

k,l=0

cos[(k − l)µp]∆y
′

k∆y
′

l

because

ǫlim ∝
dǫav

dt
∝ βy.

⇓

∆ǫlim(∆βy)

ǫlim

= 0.1 for
∆ǫlim(∆βy)

ǫlim

= 0.1.

Could numerically be well confirmed.
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Evaluation of experimental data

Error estimation: systematic error in ξy, σp

• ξy = −1.4647, σp = 5.0 × 10−4 ⇒ ∆νrms = ξyσpνy = 2.41 × 10−3

• fS ∼ ∆νrms ⇒ Power density not uniform
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Evaluation of experimental data

Error estimation: systematic error in ξy, σp

• ξy = −1.4647, σp = 5.0 × 10−4 ⇒ ∆νrms = ξyσpνy = 2.41 × 10−3

• fS ∼ ∆νrms ⇒ Power density not uniform

• Less uniform for smaller fS
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Evaluation of experimental data

Error estimation: systematic error in ξy, σp

Modification of beam loss due to error in ∆νrms depends on fS
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Change in acceptance to make I(t) for ξ = ξnat × (1 ± 0.1) fit I(t) for ξnat:

fS = 0.01/T0: ∆ǫlim = (−2.5 mm mrad, +3.7 mm mrad)

fS = 0.005/T0: ∆ǫlim = ∓6.6 mm mrad. 26
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Evaluation of experimental data

Error estimation: systematic error in ξy, σp

1. Acceptance error due to relative error of ±10 % in ξ · σp strongly depends

on fS

2. On the other hand, similar acceptances obtained for different fS

⇓

• Assumed error in ξ, σp too large because error configuration leading to similar

acceptance values is not probable

• ∆(ξσp)/(ξσp) = −4 % → acceptance ǫlim = 48 mm mrad for both fS

⇓

∣

∣

∣

∣

∆ǫlim[∆(ξσp)]

ǫlim

∣

∣

∣

∣

≈ 7 %
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Evaluation of experimental data

Error estimation

Total relative acceptance error:

|∆ǫlim,rel| =
√

[∆ǫlim,rel(random)]2 + [∆ǫlim,rel(∆β)]2 + {∆ǫlim,rel[∆(ξ · σp)]}2

< 13 %.
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Summary

• Method to measure vertical acceptance of SIS-18 based on measuring beam

loss developed.

• Evaluate experimental result by particle tracking.

• Tracking code benchmarked for white noise excitation against analytical mo-

del.

• Use of realistic noise excitation to determine acceptance.

• Found similar values for different widths of noise power spectrum.

• Estimated error to be smaller than 13 %.

29



==0mm

Next steps

• Determination of horizontal acceptance.

• Extension to measurement of dynamic aperture.

Requires usage of tracking with realistic lattice

→ MAD-X with noise introduced by means of “update” command
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