

Acceptance measurement in SIS-18 by means of transverse beam excitation with noise

Stefan Sorge, Giuliano Franchetti, and Angelina Parfenova

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

2

- Introduction
- Analytical beam loss model
- Diffusion driven by white noise
- Tracking with realistic noise
- Evaluation of experimental data
- Summary

Motivation:

- Acceptance of SIS-18 was never measured
- Help in controlling beam. In particular important during high current operation within FAIR project

General Method:

- \bullet Transverse beam excitation with noise \rightarrow Diffusion and growth of beam width
- Existing method: Measure time from beginning of excitation until start of beam loss when beam edge reaches acceptance.

3

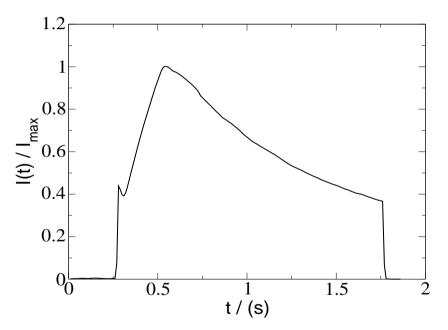
• Need to know initial beam width

Introduction

Determine acceptance of SIS-18 from time evolution of beam current.¹

- Diffusion and growth of beam width due to transverse beam excitation
- Beam loss when beam width exceeds acceptance.
- Measure of beam current and evaluate it by comparison with simulation results

Ta $^{61+}$ at $E=100~{
m MeV}$



After sufficiently long time transverse beam shape and time evolution of beam current become independent of initial beam shape.

¹S. Sorge, G. Franchetti, and A. Parfenova, Phys. Rev. ST-AB 14, 052802 (2011).

Introduction

Main experimental parameters

Circumference of SIS-18 C	$216.72~\mathrm{m}$
lon	Ta^{61+}
Initial particle number $N_{p,0}$	$\sim 10^9$
Working point, (u_x, u_y)	(4.17, 3.29)
Energy E	$100 { m ~MeV/u}$
RMS momentum spread σ_p	$pprox 5.0 imes 10^{-4}$
Nominal vertical chromaticity $\xi_{y,nat}$	-1.4647

For the moment only vertical acceptance measured.

5

Analytical beam loss model

- Increase of beam width and resulting particle loss is driven by diffusion.
- Diffusion: particle transport from phase space regions of high density to those with low density $\vec{j} = -C\nabla f$

where \vec{j}, C, ∇, f defined in vertical phase space.

• Diffusion equation for particle distribution dependent only on emittance¹:

 $rac{\partial f}{\partial t} = \left(rac{\mathrm{d}\epsilon_{av}}{\mathrm{d}t}
ight) rac{\partial}{\partial\epsilon} \left(\epsilon rac{\partial f}{\partial\epsilon}
ight)$

- Needs to be solved for $f(\epsilon, t = 0) = f(\epsilon), \ f(\epsilon \ge \epsilon_{lim}, t) = 0.$

 $-\epsilon_{av}$ – averaged emittance, ϵ_{lim} – limiting emittance = acceptance.

¹ D. A. Edwards and M. Syphers, "An introduction to the Physics of High Energy Accelerators"

Analytical beam loss model

Solution to diffusion equation \rightarrow series:

$$f(\epsilon,t) = \sum_{n=1}^{\infty} c_n J_0\left(\lambda_n \sqrt{rac{\epsilon}{\epsilon_{lim}}}
ight) \exp\left[-rac{\lambda_n^2}{4}\left(rac{\mathrm{d}\epsilon_{av}}{\mathrm{d}t}
ight)rac{t}{\epsilon_{lim}}
ight]$$

Analytical beam loss model

Solution to diffusion equation \rightarrow series:

$$f(\epsilon,t) = \sum_{n=1}^{\infty} c_n J_0\left(\lambda_n \sqrt{rac{\epsilon}{\epsilon_{lim}}}
ight) \exp\left[-rac{\lambda_n^2}{4}\left(rac{\mathrm{d}\epsilon_{av}}{\mathrm{d}t}
ight)rac{t}{\epsilon_{lim}}
ight]$$

 \bullet Fortunately, λ_1 is smallest zero of Bessel function. 1st term remains

$$f(\epsilon,t) \propto J_0\left(\lambda_1\sqrt{rac{\epsilon}{\epsilon_{lim}}}
ight) \exp\left[-rac{\lambda_1^2}{4}\left(rac{\mathrm{d}\epsilon_{av}}{\mathrm{d}t}
ight)rac{t}{\epsilon_{lim}}
ight]$$

and

$$N_p(t) \propto \exp\left[-rac{\lambda_1^2}{4}\left(rac{\mathrm{d}\epsilon_{av}}{\mathrm{d}t}
ight)rac{t}{\epsilon_{lim}}
ight]$$

when time sufficiently large.

• f is only solution if $d\epsilon_{av}/dt = const \rightarrow proof$ for white noise.

• Search for time evolution of averaged or beam emittance

$$\epsilon_{av}(t=nT_0)=rac{1}{N_p}\sum_{p=1}^{N_p}\epsilon_p(nT_0)$$

• Assume particle motion given by

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

• Lattice represented by linear one turn map

$$M = egin{pmatrix} \cos\mu + lpha \sin\mu & eta \sin\mu \ -rac{1+lpha^2}{eta} \sin\mu & \cos\mu - lpha \sin\mu \end{pmatrix}$$

with α, β – Twiss functions, $\mu = 2\pi\nu$ – phase advance per turn.

• Kicks $\Delta y'_{p,n}$ uncorrelated with respect to turn and particle (white noise)

Analytic expression for beam emittance

1. Beam emittance is linear function of time $t = nT_0$:

 $\epsilon_{av}(nT_0) = \epsilon_{av,0} + neta\sigma_{\Delta y'}^2 \qquad \Rightarrow$

$$\left.rac{\mathrm{d}\epsilon_{av}}{\mathrm{d}t}
ight|_{t=nT_0} = rac{eta\sigma_{\Delta y'}^2}{T_0} = \mathrm{const}$$

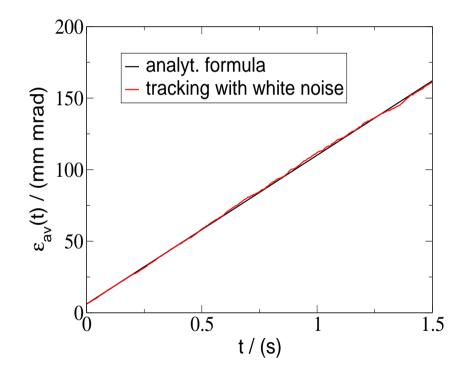
 $\sigma_{\Delta y'}$: rms momentum kick strength.

2. Use this scheme for particle tracking: Provides first benchmark of code.

Beam emittance: tracking vs. analytic model

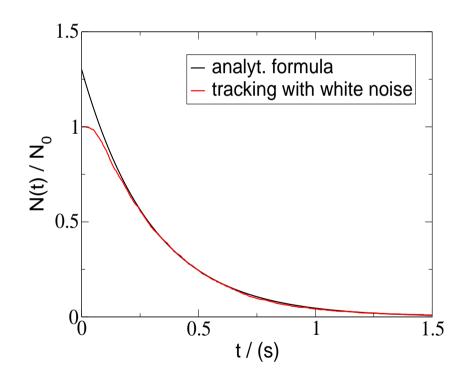
Conditions:

- White noise with
 - $\sigma_{\Delta y'} = 5 \times 10^{-6} ~{\rm rad}$
- 2000 test particles
- $\epsilon_{lim} = 45 \text{ mm mrad}$



Particle number: tracking vs. analytic model

- White noise with
 - $\sigma_{\Delta y'} = 5 imes 10^{-6} \ {
 m rad}$
- 2000 test particles
- $\epsilon_{lim} = 45 \text{ mm mrad}$



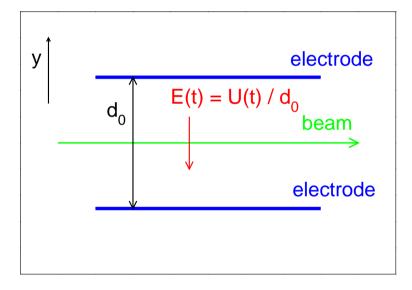
Noise used in experiment:

- Generated by an exciter with length $l_0 = 750 \text{ mm}$ vertical gap $d_0 = 70 \text{ mm}$
- Transverse RF voltage

 $U(t) = U_a \sin \left[2\pi f_C t + \phi(t)\right].$

Carrier frequency: $f_C = \nu_{frac}/T_0$

- $\phi(t)$ follows random bit sequence, where $\phi = 0$ when bit status is 0 and $\phi = \pi$ when bit status is 1, ("Pseudorandom phase shift signal").
- Duration of a bit status is $T_S \sim 100 T_0$.

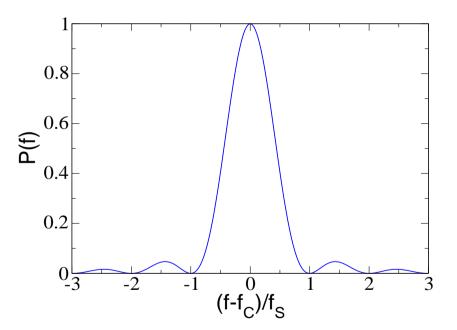


Resulting power spectrum (for positive frequencies)

$$P(f) \propto rac{\sin^2[\pi (f-f_C)/f_S]}{[(f-f_C)/f_S]^2}$$

with width $f_S = 1/T_S$,

which has to cover tune spread arising from momentum spread.



Usage of exciter voltage requires particle tracking \rightarrow model shown before.

• Inclusion of tune shift due to momentum spread requires modification of M:

$$M = egin{pmatrix} \cos\mu_p + lpha \sin\mu_p & eta \sin\mu_p \ -rac{1+lpha^2}{eta} \sin\mu_p & \cos\mu - lpha \sin\mu_p \end{pmatrix}$$

with phase advance of particle p: $\mu_p = 2\pi\nu(1+\xi\delta_p)$

• Momentum kick to all particles as function of turn number:

$$\Delta y^{'}(n) = rac{e}{m_u c^2 eta_0^2 \gamma_0} rac{Z}{A} rac{U_a l_0}{d_0} \sin \left[2 \pi
u_{frac} n + \phi_0(n)
ight].$$

with

- -Z, A charge state and mass number of ions
- $-U_a, l_0, d_0$ voltage amplitude, and length and gap width of the exciter
- $-\nu_{frac}$ fractional part of the betatron tune

Unfortunately, exciter signal provides the same momentum kick to all particles \downarrow

Coherent motion of all particles in phase space independent of particle density:

 \rightarrow No diffusion, instead random oscillation of beam centre.

Unfortunately, exciter signal provides the same momentum kick to all particles

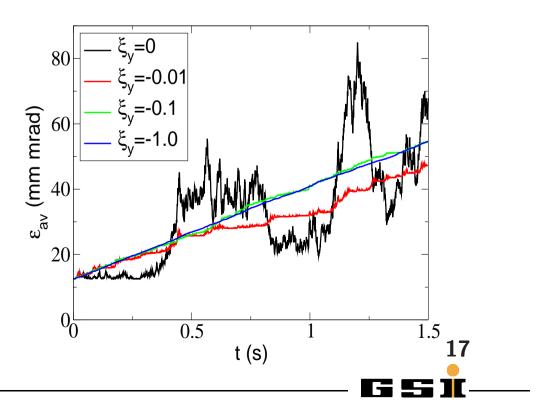
 \downarrow

Coherent motion of all particles in phase space independent of particle density:

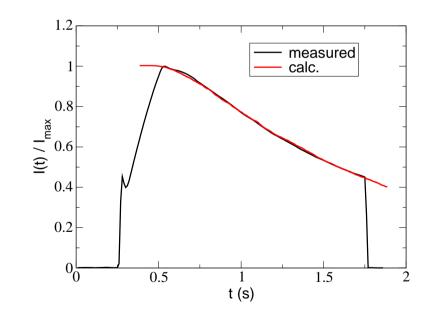
 \rightarrow No diffusion, instead random oscillation of beam centre.

On the other hand,

- Momentum spread with σ_p
 - \rightarrow tune spread $\Delta \nu_{rms} = \sigma_p \xi \nu$
- If chromaticity $\boldsymbol{\xi}$ is sufficiently large, oscillation of beam centre is damped
- Beam emittance ϵ_{av} becomes linear function of time \rightarrow Diffusion.



- Acceptance determined with trial-and-error procedure, i.e. calculate N(t) with many different test acceptances, until it fits measured N(t)
- Evaluated measurements for E = 100 MeV/u, $U_a = 29 \text{ V}$, and two f_S .
- Obtained acceptance:
 - $f_S = 0.01/T_0$ (figure) : $\epsilon_{lim} = 46 \,\, {
 m mm rad}$
 - $f_{S}=0.005/T_{0}:$
 - $\epsilon_{lim} = 45 \,\,\mathrm{mm}\,\,\mathrm{mrad}$



18

Similar acceptance values for different conditions.

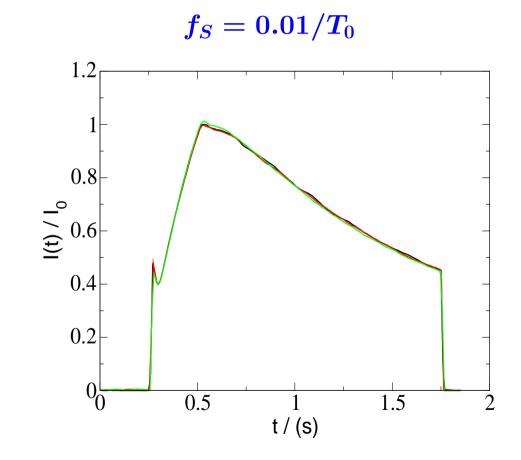
Error estimation: find upper limit for acceptance error

Distinguish between

- 1. Random errors:
 - Lead to random deviations in measured current although machine settings are not changed.
- 2. Systematic errors:
 - Parameters used in evaluation are standard machine parameters or from MAD-X calculations.
 - They may deviate from parameters in the real synchrotron.

19 G **SS II**-----

Error estimation: random errors



Random errors

 \downarrow

spread in curves for I(t)

- Search for upper limit for errors
- Spread always < 1 %, corresponds
 - to $|\Delta\epsilon_{lim,random}| < 1~\mathrm{mm~mrad}$ or

$$\delta \epsilon_{lim,random} \coloneqq rac{|\Delta \epsilon_{lim,random}|}{\epsilon_{lim}} < 2~\%$$

Error estimation: systematic errors

1. Assume maximum relative errors to estimate upper limit of acceptance error

Variable	unperturbed value	maximum relative error
	$oldsymbol{X}_{0}$	$ \Delta X/X_0 $
eta_y	7.0 m	10 %
ξ_y	-1.4647	10~%
σ_p	$5 imes 10^{-4}$	10~%

2. Add each error separately to the corresponding unperturbed value and use trial-and-error procedure to find acceptance $\epsilon_{lim}(X + \Delta X)$ so that N(t) fits N(t) calculated with $\epsilon_{lim}(X)$.

Error estimation: systematic error in β_y

Uncertainty due to $\Delta \beta_y / \beta_y$ can be predicted from analytic expression

$$\epsilon_{av}(n) = \epsilon_{av,0} + rac{eta_y}{N_p} \sum_{p=1}^{N_p} \sum_{k,l=0}^{n-1} \cos[(k-l)\mu_p] \Delta y_k^{'} \Delta y_l^{'}$$

because

$$\epsilon_{lim} \propto rac{\mathrm{d}\epsilon_{av}}{\mathrm{d}t} \propto eta_y.$$
 ψ
 $rac{\Delta\epsilon_{lim}(\Deltaeta_y)}{\epsilon_{lim}} = 0.1 \quad ext{for} \quad rac{\Deltaeta_y}{eta_y} = 0.1.$

22 3 53 **x**----

Error estimation: systematic error in β_y

Uncertainty due to $\Delta \beta_y / \beta_y$ can be predicted from analytic expression

$$\epsilon_{av}(n) = \epsilon_{av,0} + rac{eta_y}{N_p} \sum_{p=1}^{N_p} \sum_{k,l=0}^{n-1} \cos[(k-l)\mu_p] \Delta y_k^{'} \Delta y_l^{'}$$

because

$$\epsilon_{lim} \propto rac{\mathrm{d}\epsilon_{av}}{\mathrm{d}t} \propto eta_y.$$

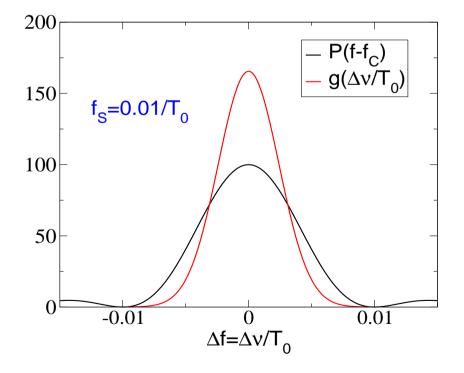
$$rac{\Delta\epsilon_{lim}(\Deltaeta_y)}{\epsilon_{lim}}=0.1 \quad ext{for} \quad rac{\Delta\epsilon_{lim}(\Deltaeta_y)}{\epsilon_{lim}}=0.1.$$

Could numerically be well confirmed.

Error estimation: systematic error in ξ_y, σ_p

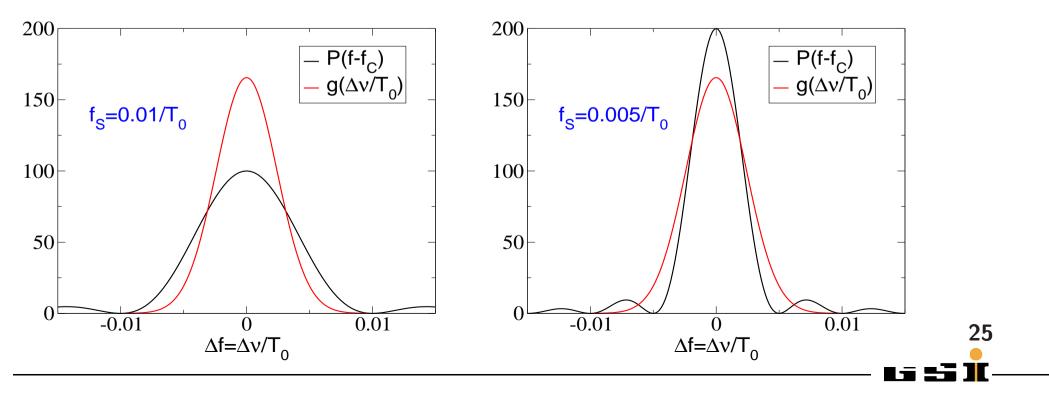
• $\xi_y = -1.4647, \sigma_p = 5.0 imes 10^{-4} \Rightarrow \Delta
u_{rms} = \xi_y \sigma_p
u_y = 2.41 imes 10^{-3}$

• $f_S \sim \Delta \nu_{rms} \Rightarrow$ Power density not uniform



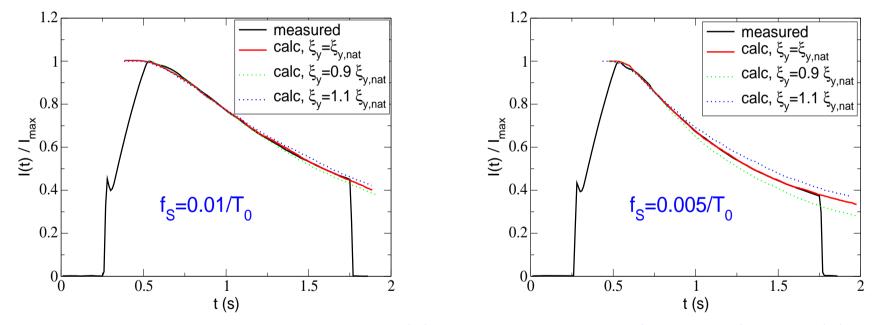
Error estimation: systematic error in ξ_y, σ_p

- $\xi_y = -1.4647, \sigma_p = 5.0 \times 10^{-4} \Rightarrow \Delta \nu_{rms} = \xi_y \sigma_p \nu_y = 2.41 \times 10^{-3}$
- $f_S \sim \Delta \nu_{rms} \Rightarrow$ Power density not uniform
- Less uniform for smaller f_S



Error estimation: systematic error in ξ_y, σ_p

Modification of beam loss due to error in $\Delta \nu_{rms}$ depends on f_S



Change in acceptance to make I(t) for $\xi = \xi_{nat} \times (1 \pm 0.1)$ fit I(t) for ξ_{nat} :

 $f_S = 0.01/T_0: \Delta \epsilon_{lim} = (-2.5 ext{ mm mrad}, ext{ +3.7 mm mrad}) \ f_S = 0.005/T_0: \Delta \epsilon_{lim} = \mp 6.6 ext{ mm mrad}.$

Error estimation: systematic error in ξ_y, σ_p

- 1. Acceptance error due to relative error of $\pm 10~\%$ in $\xi \cdot \sigma_p$ strongly depends on f_S
- 2. On the other hand, similar acceptances obtained for different f_S
 - Assumed error in ξ , σ_p too large because error configuration leading to similar acceptance values is not probable

 $\downarrow \downarrow$

• $\Delta(\xi \sigma_p)/(\xi \sigma_p) = -4 \% \rightarrow \text{acceptance } \epsilon_{lim} = 48 \text{ mm mrad for both } f_S$ \downarrow $\left| \frac{\Delta \epsilon_{lim} [\Delta(\xi \sigma_p)]}{\epsilon_{lim}} \right| \approx 7 \%$

Error estimation

Total relative acceptance error:

 $|\Delta \epsilon_{lim,rel}| = \sqrt{[\Delta \epsilon_{lim,rel}(\mathsf{random})]^2 + [\Delta \epsilon_{lim,rel}(\Delta \beta)]^2 + \{\Delta \epsilon_{lim,rel}[\Delta (\xi \cdot \sigma_p)]\}^2}$

< 13 %.

Summary

- Method to measure vertical acceptance of SIS-18 based on measuring beam loss developed.
- Evaluate experimental result by particle tracking.
- Tracking code benchmarked for white noise excitation against analytical model.

- Use of realistic noise excitation to determine acceptance.
- Found similar values for different widths of noise power spectrum.
- \bullet Estimated error to be smaller than 13~%.

Next steps

- Determination of horizontal acceptance.
- Extension to measurement of dynamic aperture.

Requires usage of tracking with realistic lattice

 \rightarrow MAD-X with noise introduced by means of "update" command