

Aperture

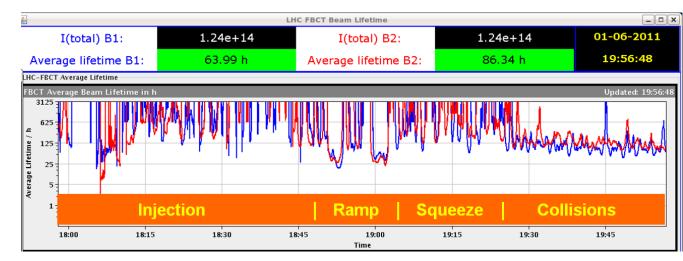
Better than expected (beating, dispersion, alignment...)

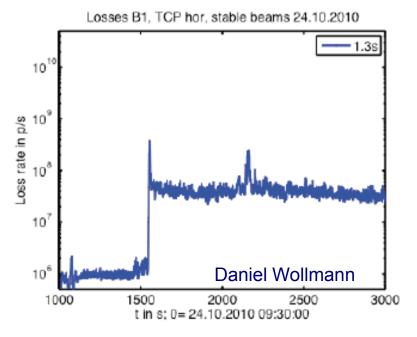
Better than nominal from injectors

- Emittances, bunch intensity
- Beam-beam: can collide nominal bunch currents
 - With smaller that nominal emittances
 - Now running with separation in Alice and LHCb without any problems

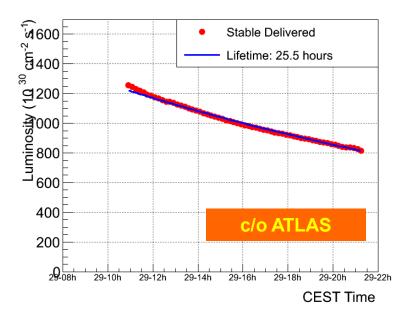
Collimation

- Relaxed settings, better than estimated lifetimes
- □ No quenches above 450 GeV
- Ramp and squeeze essentially without loss



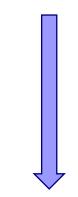

2011- at the moment

Energy [TeV]	3.5				
beta* [m]	1.5, 10.0, 1.5, 3.0 m				
Emittance [mm.mrad]	~2.5 – 2.8				
Bunch intensity	1.2e11				
Number of bunches	1092 1042 collisions/IP				
Stored energy [MJ]	75				
Peak luminosity [cm ⁻² s ⁻¹]	1.26e33				
Beam-beam tune shift	0.015 - 0.02				


Lifetimes during a fill (1092 bunches)

- Very good lifetime during the whole process
- Lifetime dip to around 1 hour going into collisions

Luminosity lifetime > 20 hours



Optics, Magnets, Aperture

- Debugging machine during commissioning
- Debugging software during commissioning
- Debugging database during commissioning
- Debugging magnet model during commissioning
- Measurement and correction
 - Beat beat
 - □ Coupling: global and local, triplet alignment
- Settings generation and optimization
 - Optics import, knob generation
 - □ Squeeze optimization
- Operational tools
 - □ On-line model see Gabriel's talk
 - □ Aperture model

Debugging continued!

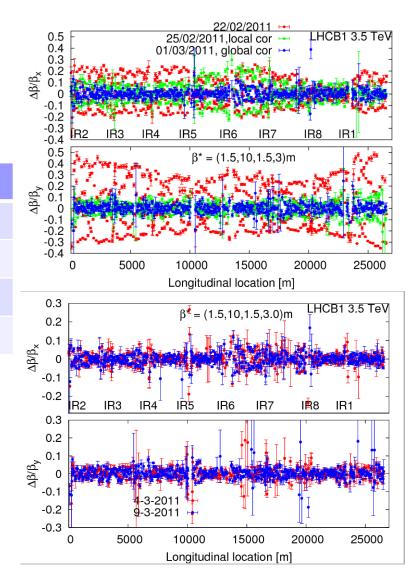
Started a long time ago TT40, TI8, sector tests, 2008...

And has uncovered issues in....

- Polarities
- Transfer functions
- Cycling Strategy
- Corrector and BPM polarities
- Circuit cabling
- Alignment
- Software, models, settings, database, you name it...

- Lot of effort went into modelling the lines, tracking down optics errors, sources of coupling etc.
 - □ Excellent results key in the transport of high intensity beams
 - Tight constraints but stable
- Matching considered carefully during commissioning
 Not routinely revisited
- Accurate aperture model indispensible in steering and tracking down loss locations and potential misalignments
 E.g. vacuum valve assembly in injection region

- Not to scruffy to start with, once polarity and calibration errors had been tracked down
- Beating well measured and well corrected through the operational cycle with initially local and then with global corrections
- Still using orbit response matrix from ideal model
- Instrumentation still using ideal Twiss
- Key point for operations: remarkably stable



Machine still beautiful

- Beta beating corrected down to 5-10%!!
- Confirmed stability of the optics
- 'Final' β^* values from K-modulation:

Beam/plane	IR5	IR1
B1H	1.50	1.53
B2H	1.48	1.57
B1V	1.52	1.50
B2V	1.52	1.57

- Errors around 4-10%
- Aperture: global > 12 σ , triplet > 14.5 σ

See Ezio's talk

Major success – "The knowledge of the magnetic model of the LHC is remarkable and has been one of the key elements of a very smooth beam commissioning"

MAD, WISE and FIDEL versus the machine

- Momentum on the button & differences between sectors
 ~5 units peak to peak at 450 GeV
- Tune within 0.1 of nominal (a rather remarkable result) at 450 GeV
- Set tune and chromaticity more-or-less identical for both beams
- Set chromaticity off at 450 GeV

		Chr	Chroma settings in LSA			43.6		-38.7	Applied	lied b3 correction			
		QPH.B1	delta	QPV.B1	delta	QPH.B2	delta	QPV.B2	delta	b3A12B1	1	b3A12B2	
Long FT	20:35	-20		-14.7		-20.4		-13.9		-4.847		-4.932	
	23:18	-14 5	5.5	-19 2	-4.5	-15.7	4.7	-18.4	-4.5	-4.908	-0.061	-4.992	-0.06
short FT	4:33	-11.7	2.8	-22.7	-3.5	-11	4.7	-22.2	-3.8	-4.87	0.038	-4.954	0.038
		\bigcirc	8.3		-8		9.4		-8.3		-0.023		-0.022
	с	lelta in b3	0.19		0.21		0.22		0.21	QPH	-1.0028		-0.9592
										QPV	0.8901		0.8514

- Fabulous job by the teams involved, leveraging the techniques and tools described elsewhere in this workshop.
- Staged approach (some of it unplanned) allowed some impressive evolution
- "Well integrated, interactive, intuitive and good software"
- Healthy determination to track down problems
- Of note functionality was available when we needed it most.

OPERATIONAL EXPERIENCE

- Beam quality monitoring in SPS critical
 - □ Beam quality from injectors is critical
 - Worry about scraping, satellites, intensity variations..
- Stability of exit conditions from SPS critical
- Stability of transfer lines critical
- Tight transfer line collimation
 - Clear issue with the fact that these things are sitting next superconducting magnets
 - □ Tight constraints on steering, injection oscillations
- At present injecting 144 bunches @ 50 ns bunch spacing
 nominal bunch intensity at around 2.5 micron
- Position of protection devices in LHC critical with the TDIs in close

The optics doesn't change, but the energy does

- Digging deeper in the magnet calibration curves
- □ Persistent current effects drop off but...
- □ include 500 s for b3 decay at 3.5 TeV

Usual stuff

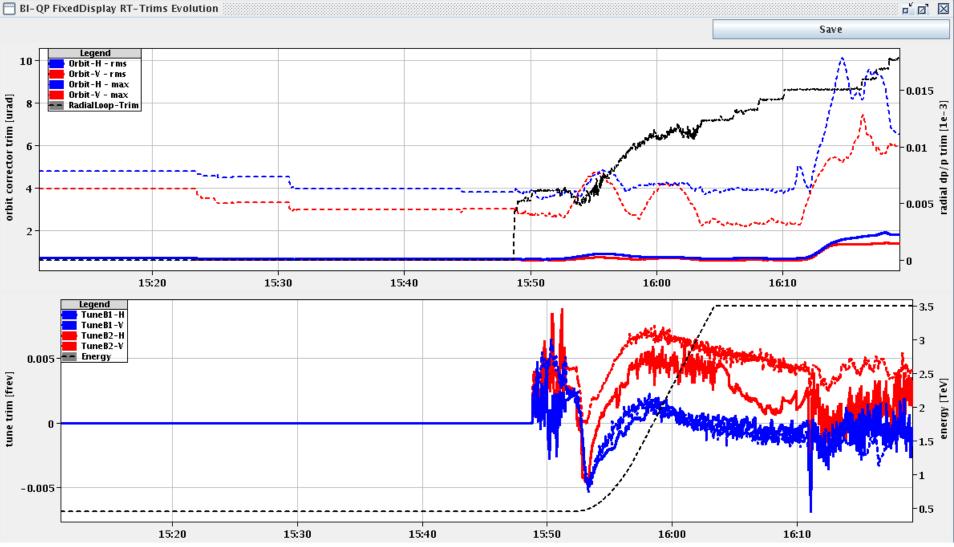
- Damper gain down to allow feedback to see tune signal
- □ Octupoles increase in strength single bunch HT
- □ Longitudinal blow-up target bunch length 1.25 ns
- □ Coupling global empirical (OP) & deterministic (ABP)
- Collimators track beam size reduction

Note: we know have transverse feedback and octupoles on through the whole cycle

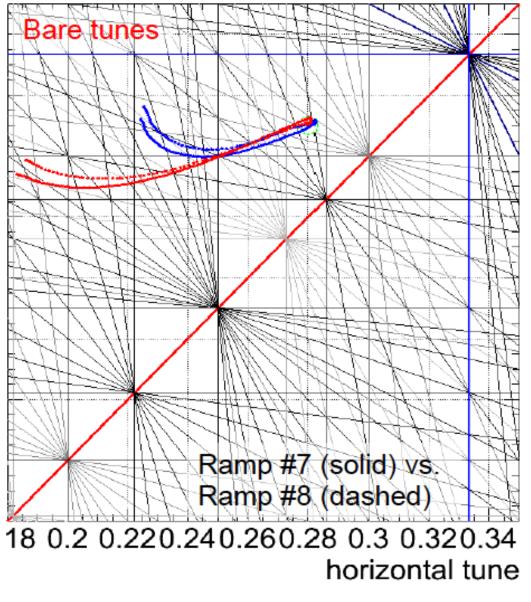
Persistent currents

- \Box Corrections in for b2, b3, b4, b5, a2,
- □ Dynamic tracking of b2, b3@450 GeV
- □ Full decay for b4, b5
- Predicted snap-back correction applied for b3, b4, b5
- Model not perfect
- Discrepancies mopped up with lattice sextupoles
- Decay amplitudes does move around a bit, impact correction during first 30 s but not an issue
 - Q' swings between 0 and 5 in first minute of ramp transverse feedback on – beam doesn't seem to mind

Tune feedback


- □ Good reproducibility feed-forward performed irregularly
- □ Nonetheless feedback considered as mandatory
- Battle between feedback and transverse damper (gain lowered in ramp to give feedback a chance)
- Coupling control important

Orbit feedback


- □ Also mandatory
- Reference plus bumps which scale down in ramp
- □ Feed-forwarded performed but very good reproducibility

📅 BI-QP FixedDisplay RT-Trims Evolution

Bare tune swings in the ramp

22-6-2011

LHC operations

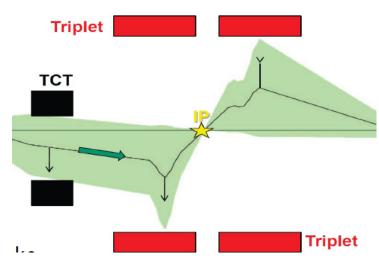
Ralph Steinhagen

Carefully stitched together, matched optics

- Time evolution given by slowest circuit usually drop in current of single quadrant power converter driven IPQ
- Present length from 11 m to 1.5 m in 475 seconds (much improved!)
- Tune from injection to collision tunes at start of squeeze
 - Tune feedback considered mandatory, tune change followed with change of reference, always slight worrying
- Chromaticity corrected via feed-forward
 - □ Reproducible not measured at all these days with high intensity

Coupling

- □ Empirical correction using global knobs
- Deterministic global correction
- Deterministic local correction using triplet skew quads

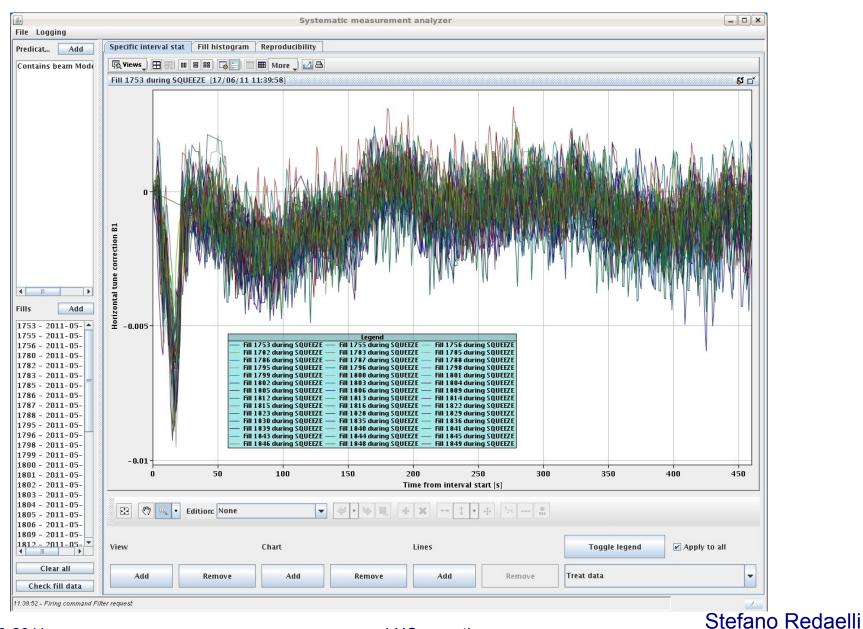

Orbit feedback mandatory

□ Changing bump size and configuration dealt with via overlays

- Collimators
 - Tertiaries track optics changes in IRs
- Minimum beta* used given by required collimator margins, which assume:
 - Beating corrected to below 10% and a reproducibility of better than 5%
 - □ Aperture at triplet is well known (i.e. measured locally)

		2010	2011		
	(σ) (mm)		(σ)	(mm)	
triplet-TCT	2.5	0.9-2.1	2.3	1.1-2.7	
TCT-TCSG IR6	5.7	3.5-4.4	2.5	1.3-1.8	
TCSG IR7–TCP	2.8	0.6-1.6	2.8	0.5-1.5	

Roderick Bruce


- In general remarkably trouble free and reproducible
- Impeccably matched optics
- Reasonably sensible implementation in LSA
- Concerted attention to optimization
 - □ Length, inter-optics correction
- Reproducibility very good, feed-forward performed
- Feedbacks still regards as essential

Feed-forward in squeeze

Residual corrections made by feedback

Tune reproducibility in squeeze

22-6-2011

Squeeze – getting clever

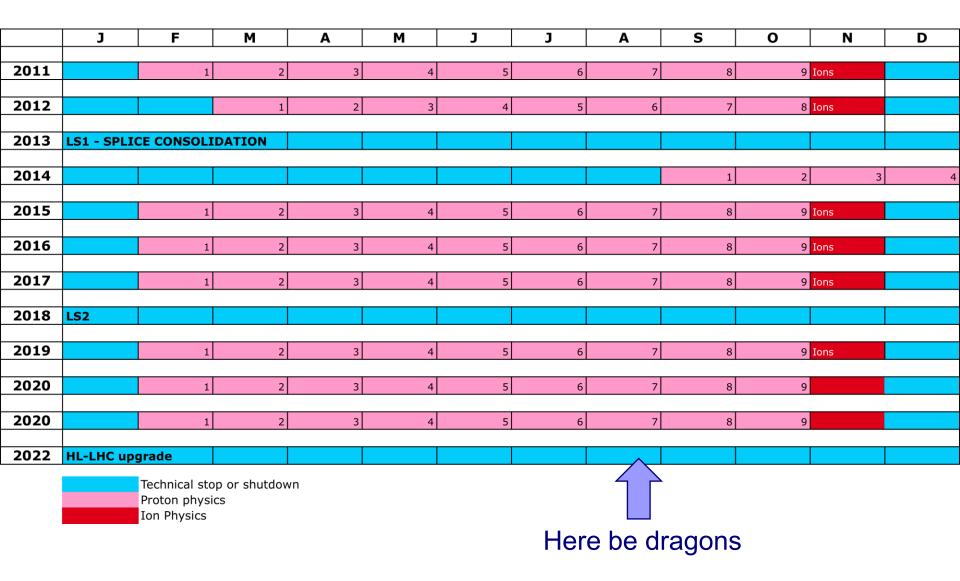
Predicted swings in tune & chromaticity between match optics now predicted and corrected in anticipation

💰 Trim Editor	
O ▼ RBA: Ihcop IHC ▼ Ø OP ▼ Ø BP ▼	
Beam Processes Filter: ONN. MULTIPLEXED_LHC BI-START-SQUEEZE-2011-ACTUAL DISCRETE_LHCRING_INJ_KICKER_VI SQUEEZE-HICHBERA-90M_3.5TeV_IPI+IPS_LONG_VI EI-SQUEEZE-SETTING_VI BI-SQUEEZE-SETTING_VI CollimatorBP-450GeV_VI@0[START] CollimatorBP-450GeV_VI@11 CollimatorBP-450GeV_VI@11 CollimatorBP-450GeV_VI@11 CollimatorBP-450GeV_VI@15 CollimatorBP-450GeV_VI@15 CollimatorBP-450GeV_VI@15	RF BEAM CONTROL B1 KNOB RF BEAM CONTROL B2 K RF CAVITY CONTROLLE K RF CAVITY CONTROLLE K RF CAVITY CONTROLLE K RF INJ PHASE B1 I RF INJ PHASE B2 I RF SNCHRO RF, BLOW_UP_B1 RF, BLOW_UP_B2 V Select All Select All
CollimatorBP-450GeV_V1@16	Search parameter by name:
Setting part: Value Target Correction Trim History T Displayed Function: LHCBEAM1/QV_TRIM	Fime base: SuperCycle Cycle/Beamprocess Injection
0.006	Abort Trim
	Cancel Last Trim
	1200 1400 1600 1800 Trim Expert Params
Graph Table	7.

Stefano, Xavier, Gabriel

Operations' 7 pillars of wisdom

Given an impeccably debugged, optically good machine with an excellent magnet model operations then rely on:


- Availability
- Reproducibility
- Control
- Instrumentation
- Optimization and stability
- Understanding
- Safety

Or more generally "if it ain't broke don't fix it"

INCOMING

Latest unofficial 10 year plan

Bunch spacing	From Booster	Np/bunch	Emittance H&V [mm.mrad]	No. of bunches from SPS
150	Single batch	1.1 x 10 ¹¹	< 2.5 (1.6)	1 – 4 x 12
75	Single batch	1.2 x 10 ¹¹	2	1 – 4 x 24
75	Double batch	1.2 x 10 ¹¹ (?)	1.2 (?)	1 – 4 x 24
50	Single batch	1.45 x 10 ¹¹	3.5	1 – 4 x 36
50	Double batch	1.2 x 10 ¹¹ (?)	1.5 (?)	1 – 4 x 36
25	Double batch	1.15 x 10 ¹¹	3.6	1 – 4 x 72

Rest of this year

- 50 ns push to 1380 bunches per beam
- Double batch injection PSB/PS and then push
 Bunch intensity and or emittance
- Worry about:

 - □ RF
 - Bunch length
- 25 ns probed in MD
 - Experiments would like to see a run with 25 ns with a limited number of bunches
- If anyone fancies some fun proton-lead to be tried
- New optics also incoming (ATS, high beta*...)

Potentially higher energy

- 4 or 4.5 TeV based on measurements to be made during the Christmas technical stop
- Ramp at collision tunes?
 - □ See Rogelio et al

50 ns

- If only because the emittance offered by the injectors is that better than for 25 ns – more for less
- Push emittance and bunch current
- Lower beta* perhaps
 - □ Long range beam, crossing angle, aperture
 - □ Limits from demands of collimator hierarchy on orbit stability

IP 1 & 5

ϵ_n	β^*	β^*	α	α
Energy	$(3.5 { m TeV})$	(4.0 TeV)	$(3.5 { m TeV})$	$(4.0 \mathrm{TeV})$
$1.5 \ \mu m$	1.4 m	1.4 m	\pm 120 μ rad	\pm 120 $\mu { m rad}$
$2.0 \ \mu m$	$1.5 \mathrm{~m}$	1.4 m	\pm 120 μ rad	\pm 120 $\mu { m rad}$
$2.5~\mu{ m m}$	1.6 m	$1.5 \mathrm{m}$	\pm 120 μ rad	\pm 120 $\mu { m rad}$
$3.75~\mu\mathbf{m}$	1.8 m	1.6 m	\pm 140 $\mu { m rad}$	\pm 140 $\mu { m rad}$

HOLIDAY!

- 6.5 TeV or thereabouts
- Injection doesn't change
 - □ Give or take longer pre-cycles, different powering history
 - □ Although 25 ns promises larger emittances challenging

Ramp

- □ Digging deeper into transfer functions
- Some spool piece circuits pushed into current limits
- Persistent current effects go down
- □ Tolerances lower, better control of Q, Q', orbit

Collimation

- No DS collimators, should be good for nominal intensity given various assumptions (including minimum lifetime)
- □ Tight collimator settings will be a challenge

Impedance

"Nominal 25ns beam is probably OK."

See N. Mounet and E. Métral - Impedance without IR3 upgrade

Squeeze to 55 cm

- Beating and coupling correction of course
- □ Higher order triplet correction, feed-down
- Orbit stability in IRs, orbit correction during squeeze
- Alignment
- □ Aperture
- □ BPM offsets

I draw the line at LS2...

LHC at present in great shape

- Much of this down to the developments and hard work presented at this workshop
- The challenges will keep coming, tolerances will become even more demanding as the intensity and energy is pushed up
- Look after intellectual value of what's been achieved
 Keep expertize in house and provide necessary resources
 Fidel is going to take some looking after
 - Massive database, devil in details, software critical for operations