

LHC Injectors Upgrade Project Overview

R. Garoby for the LIU Project Team

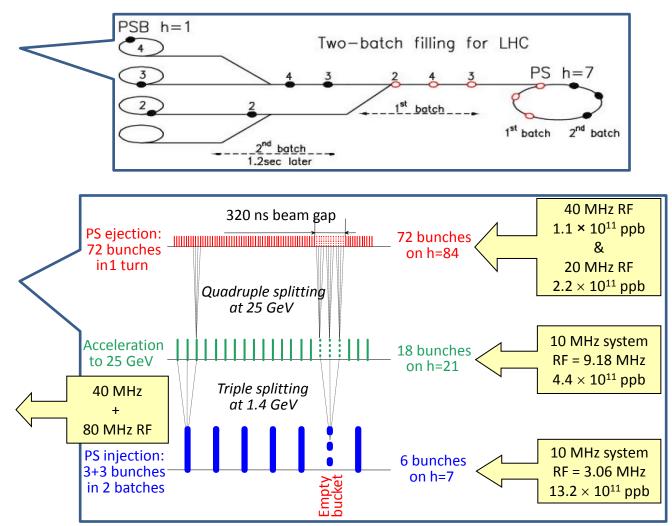
OMCM workshop - 22/06/2011

Introduction

- Planned actions
- Status of investigations
- Estimated beam characteristics
- Planning
- Summary

Mandate

"The LHC Injectors Upgrade should plan for delivering reliably to the LHC the beams required for reaching the goals of the HL-LHC. This includes LINAC4, the PS booster, the PS, the SPS, as well as the heavy ion chain."


Implementation

The LIU Project will:

- Analyse the status of the injectors and the HL-LHC requirements,
- Propose an upgrade path for the injectors, exploiting the work done by the Task Forces on the "PSB energy upgrade" and "SPS upgrade" and by the Working Group on the SPS upgrade,
- Organize the upgrades (WBS with resources and planning) and take care of their implementation,
- Take care of hardware and beam commissioning.

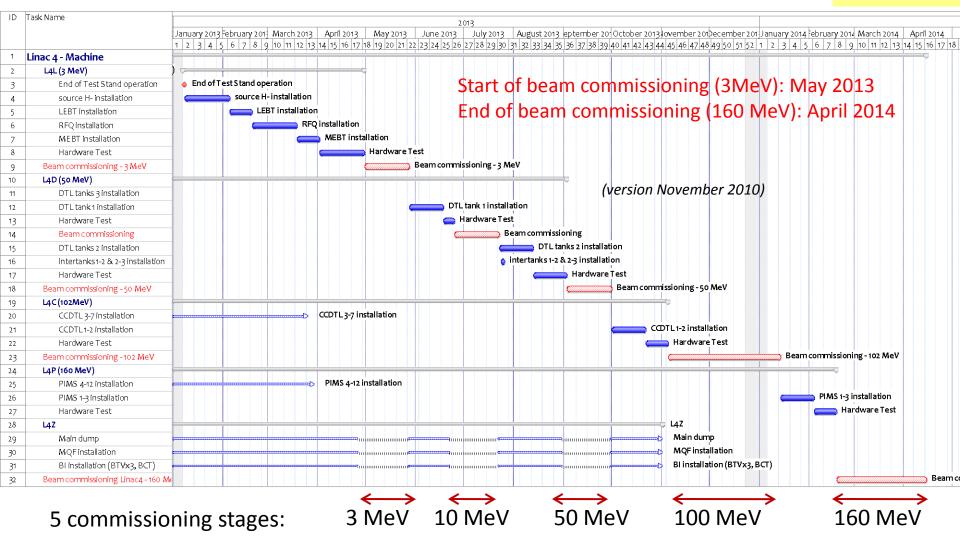
Generation of LHC beam in the PS complex

- Division by 2 of the intensity in the PSB (one bunch per ring and double batch filling of the PS)
- 2. Increase of the injection energy in the PS (from 1 to 1.4 GeV)
- 3. Quasi-adiabatically splitting of each bunch 12 times in the PS to generate a train of bunches spaced by 25 ns
- Compression of bunches to ~4ns length for bunch to bucket transfer to the SPS
- 5. Stacking of 3-4 PS batches in the SPS and acceleration to 450 GeV

Introduction

Planned actions

- Status of investigations
- Estimated beam characteristics
- Planning
- Summary


To increase performance

Brightness ↗

- ⇒ Increase injection energy in the PSB from 50 to 160 MeV, Linac4 (160 MeV H^-) to replace Linac2 (50 MeV H^+)
- ⇒ Increase injection energy in the PS from 1.4 to 2 GeV, increasing the field in the PSB magnets, replacing power supply and changing transfer equipment
- ⇒ Upgrade the PSB , PS and SPS to make them capable to accelerate and manipulate a higher brightness beam (feedbacks, cures against electron clouds, hardware modifications to reduce impedance...)
- To increase reliability and lifetime (until ~2030!) (tightly linked with consolidation)
- ⇒ Upgrade/replace ageing equipment (power supplies, magnets, RF...)
- \Rightarrow **Procure spares**
- ⇒ Improve radioprotection measures (shielding, ventilation...)

Linac4: Commissioning schedule

M. Vretenar

In 2013/14 (15 months), 6.5 months of beam commissioning, 3 months of HW tests, 5.5 months of installation

OMCM workshop - 22/06/2011

Upgrade Work Packages

PSB	Management (M resources)			
	Beam Dynamics			
	Magnets			
	Magnetic Measurements			
	RF			
	Beam Intercepting Devices			
	Power Converters (PSB)			
	Power Converters (Injection)			
	Vacuum System			
	Beam Instrumentation			
	Commissioning			
	Injection			
	Extraction, Transfer			
	Controls			
	Electrical Systems			
	Cooling & Ventilation			
	RP and Safety			
	Transport and Handling			
	Survey			

Management (M resources)				
Beam Dynamics				
Magnets				
RF				
EPC				
Beam instrumentation				
Intercepting device				
Vacuum system				
Injection				
Controls				
Electrical system				
Cooling and ventilation				
Transport				
Civil engineering				
RP				
Machine Interlocks				
Alarms				
Access doors				
Survey				
OP				

SPS	Management (M resources)			
	Beam dynamics studies and			
	MKDV/H impedance reduction			
	Beam instrumentation			
	Extraction protection upgrade			
	New high bandwidth damper			
	Existing damper power upgrade			
	Existing damper removal to			
	RF 200 MHz upgrade			
	ecloud mitigation: aC coating			
	New collimation system			
	New MKE and extraction			
	channel upgrade			
	Beam dump upgrade			
	TL protection upgrade			

+ Consolidation...

Tentative RCS parameters

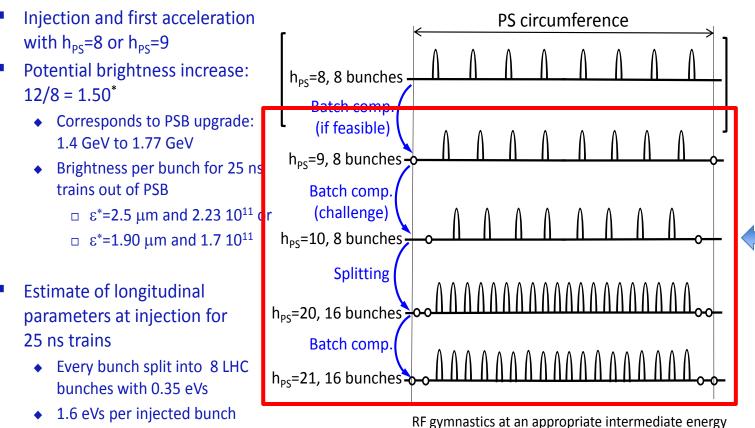
=> Same beam characteristics than PSB @ 2GeV
=> Shorter PS § SPS injection flat bottoms

Energy range	160 MeV to 2 GeV
Circumference	$(200x 4/21) \pi m \approx 119.68$ K. Hanke
Repetition rate	~10 Hz
RF voltage	60 hr fits.
Harmonics	Bener de l? Sturr
Frequency range	and upgrace action)
Beam param (for 1 PSB CO	onsolidation and design design and modern design and woodern sics operation
Beam param (for 1 • Competitive cost Wrt PSB co • Competitive cost wrt PSB co • Reliability (new hardware • Reliability (new hardware • Reliability (new hardware • Commissioning decouple • Commissioning decouple	160 MeV to 2 GeV (200x 4/21) π m \approx 119.68 ~10 Hz 60 W Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefits: Benefi
• Reliantissionine	3.5 < Q _{H,V} < 4.5
L Communication (4x)	2 x 2.35 m
Rel stic gamma at transition	~4
Maximum magnetic field	< 1.3 T

- Introduction
- Planned actions
- Status of investigations
- Estimated beam characteristics
- Planning
- Summary

PS injector: RCS feasibility study

Beam characteristics:


- for all PS users: equivalent to PSB at 2 GeV
- for ISOLDE: ~ 7 10¹³ p/s @ 2 GeV (today: ~10¹³ p/s @ 1.4 GeV)

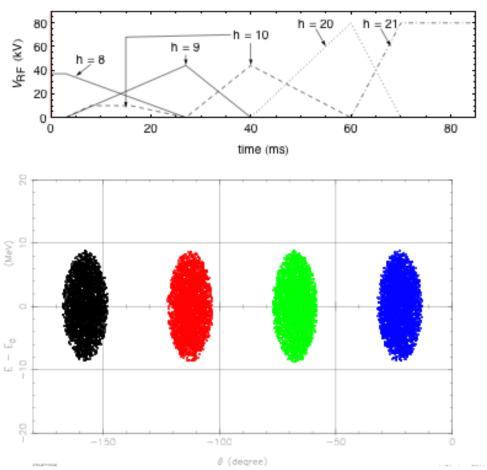
Feasibility report with cost estimate: <u>end of July</u>

PS Longitudinal: Batch Compression (1/2)

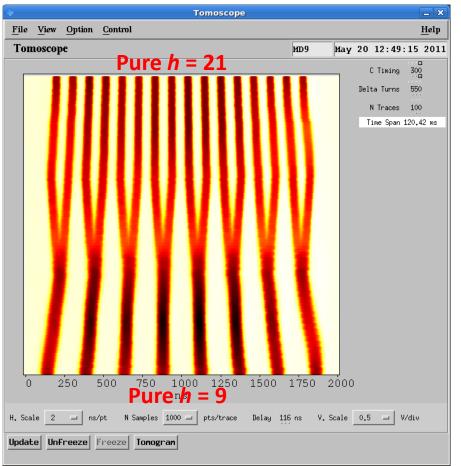
Batch Compression Schemes in the PS Compression to h_{PS} = 10 and generation of 64 bunches

allows a factor 1.75 blow-up

*) With h_{PS}=8 at injection, compared to present situation with Linac2 and double batch PSB to PS transfer RF gymnastics at an appropriate intermediate energy (hypothesis 2.5 GeV)


C. Carli et al.

(Injection and first acceleration with h_{PS} =8 or h_{PS} =9)

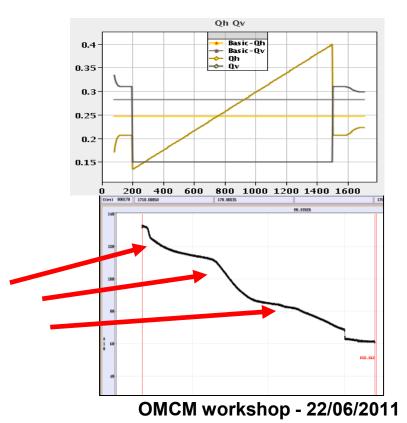

12

PS Longitudinal: Batch Compression (2/2)

Simulation (C. Carli)

MD result at 2 GeV (H. Damerau, S. Hancock)

- RF gymnastics OK up to intermediate energy
- Significant effort required to reach 26 GeV and make beam available for the SPS (RF preparation § beam adjustment) => Need for precise measurement of transverse emittances before continuing

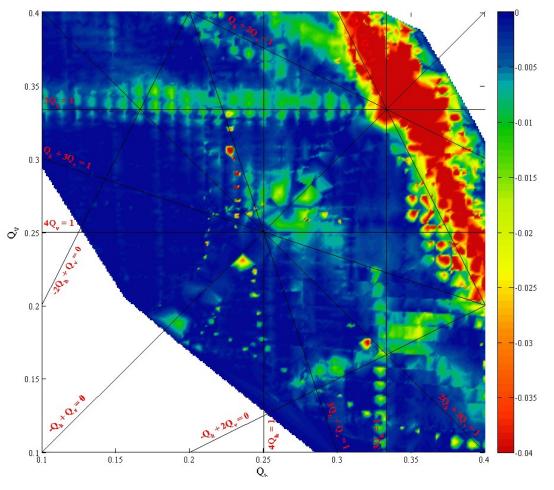

Transverse: Principle of Working Point Scans

E. Benedetto

GOAL: Identify dangerous resonance lines in tune diagram Loss measurement for different WPs:

- Low intensity beam (not SC-dominated) \rightarrow 130 x 10¹⁰ protons
- Large emittance (to fill the chamber & provoke immediate losses)
- Long flat bottom @ 1.4 GeV
- Tune program:
 - Scan between (0.1 0.4)
 - Vertical tune constant
 - Sweep of the horizontal tune

Slope in the intensity signal indicates importance of the crossed resonance line



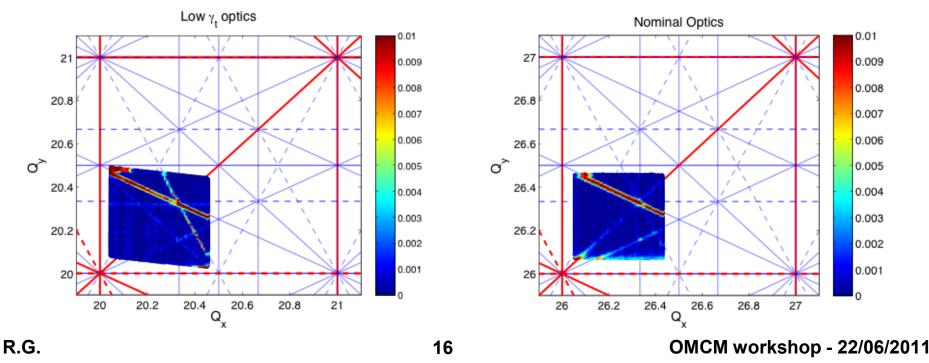
2 GeV

E. Benedetto

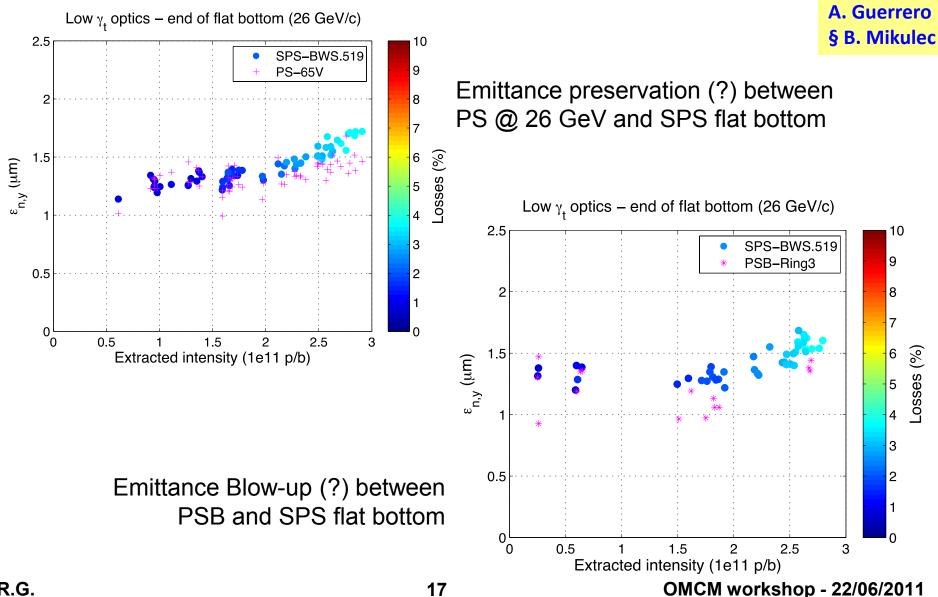
 \Rightarrow w/o PFW : no surprises

 \Rightarrow with PFW ongoing

OMCM workshop - 22/06/2011



H. Bartosik


- Identified resonances in the low γ_t optics
 - normal sextupole resonance Qx+2Qy is the strongest
 - skew sextupole resonance 2Qx+Qy quite strong !!??
 - normal sextupole Qx-2Qy, skew sextupole resonance at 3Qy and 2Qx+2Qy fourth order resonances visible

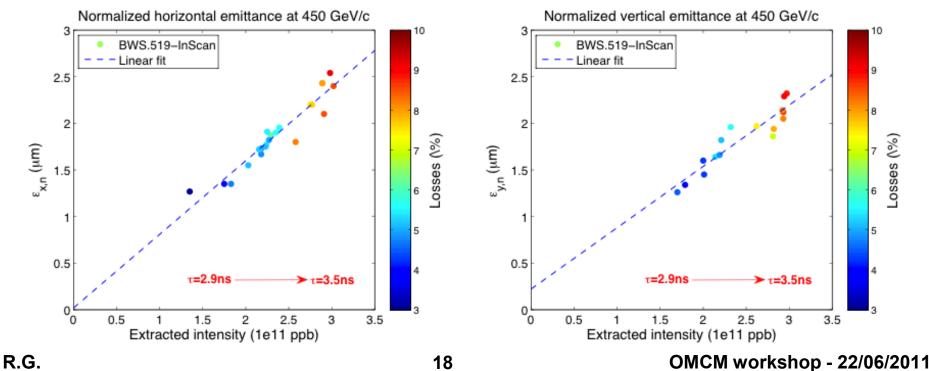
Identified resonances in the nominal optics

- normal sextupole resonance Qx+2Qy is the strongest
- Coupling resonance (diagonal, either Qx-Qy or some higher order of this), Qx-2Qy normal sextupole
- skew sextupole resonance 2Qx+Qy weak compared to Q20 case
- It seems that the stop-band width of the vertical integer is stronger than in Q20 optics

Transverse emittance measurement: debugging...

R.G.

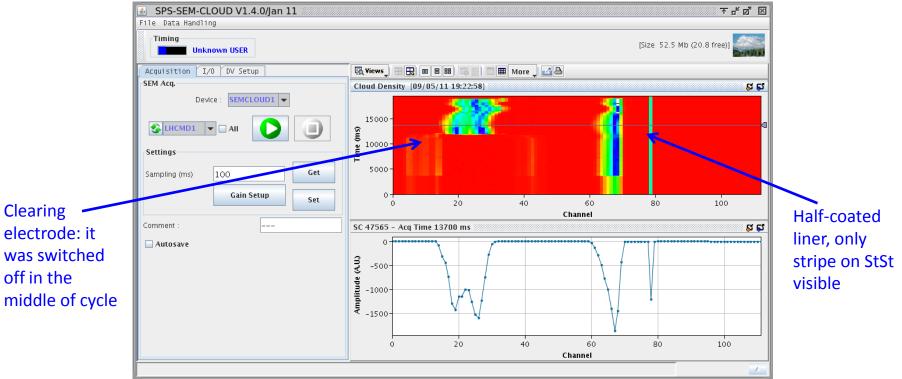
Transverse: emittances vs intensity in SPS


H. Bartosik

Measurement of single bunch emittances

- In scan with "reference" wire scanner BWS.519 at flat top
- Long cycle (~10s injection plateau, ~10s acceleration)
- Losses along the cycle extracted from DC-BCT measurement

PS bunch length increasing with intensity


- T=2.9ns @ 1.5e11 p/b, T=3.5ns @ 3e11 p/b
- Emittances in PSB: ~ 1µm < 1.5e11p / ~ 1.1µm @ 2e11p / ~ 1.3µm @ 3e11p (Well adjusted beam in the PSB!)

SPS: e-cloud with 25 ns bunch train

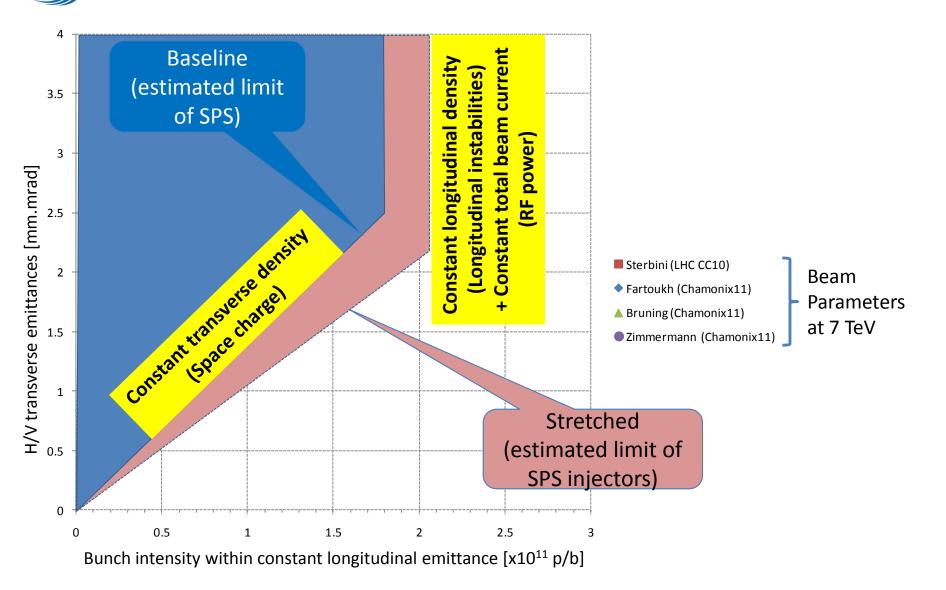
M. Taborelli

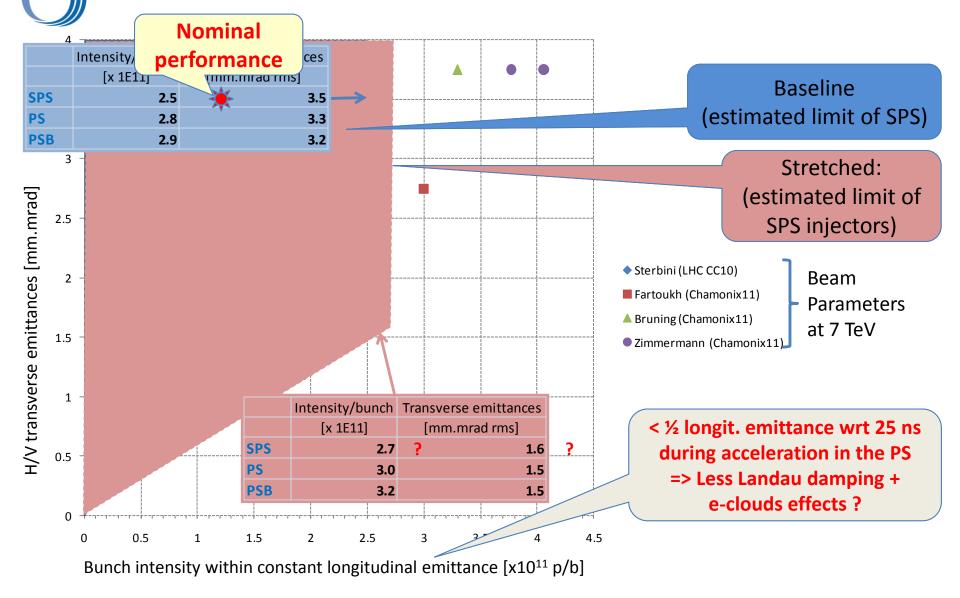
- Electron cloud measured at all the liners
 - Signal already visible with 1 batch on both stainless liners
 - No signal visible on the a-C coating liner
 - Half signal clearly visible on the half coated chamber
 - Effect of the clearing electrode checked scanning points on a grid of voltage vs. magnetic field values

R.G.

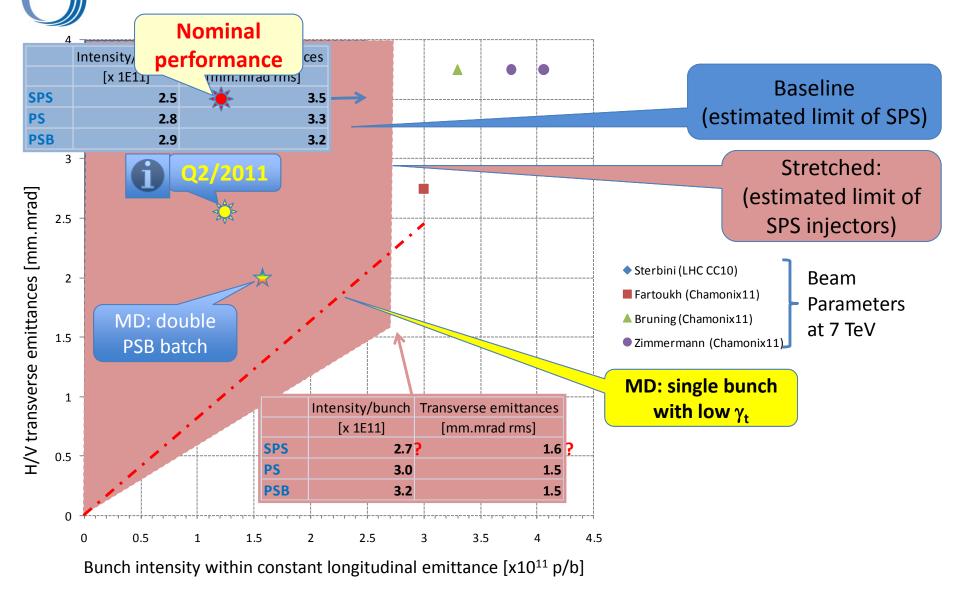
- Introduction
- Planned actions
- Status of investigations

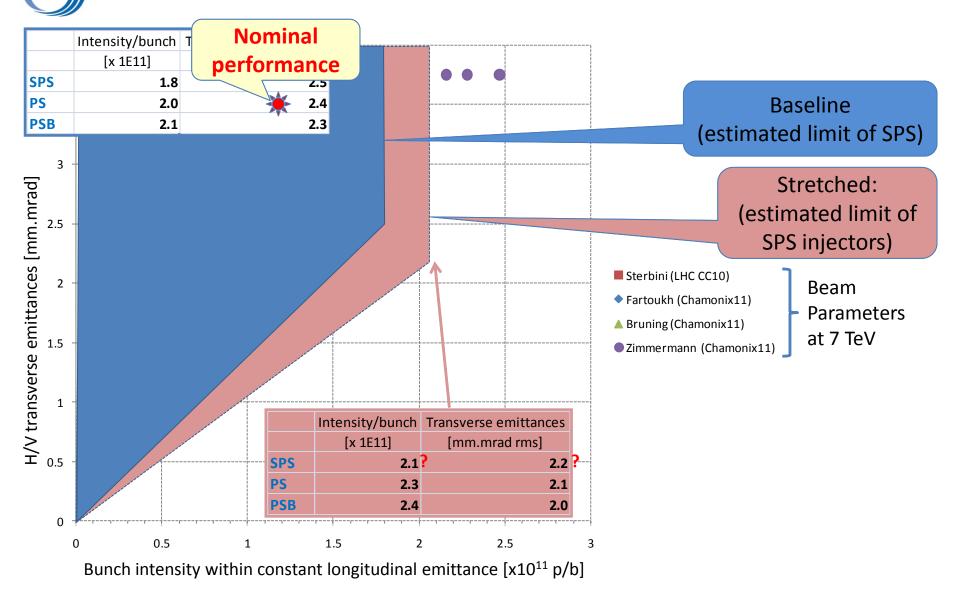
Estimated beam characteristics

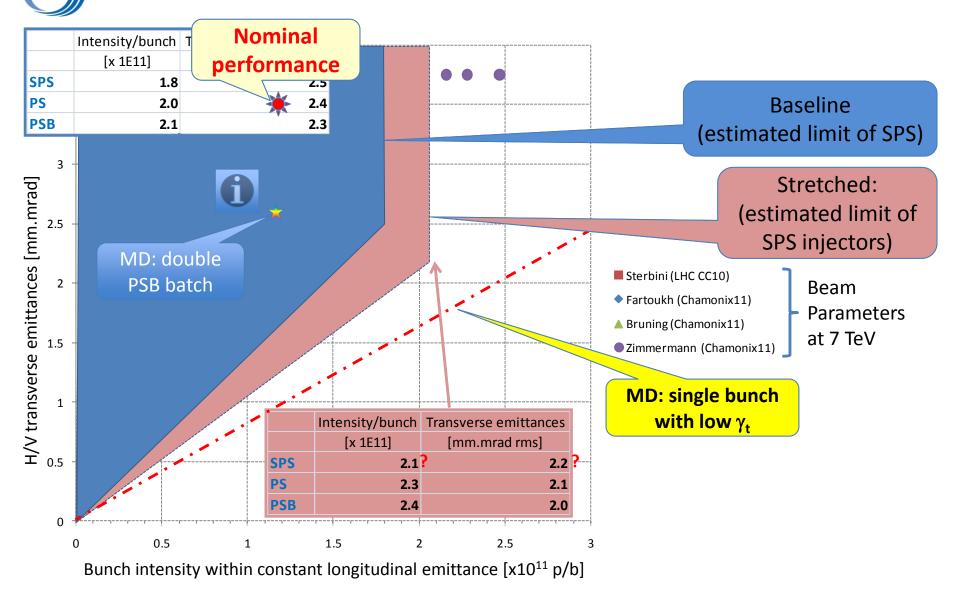

- Planning
- Summary



- Beam parameters are given at injection in LHC: beam loss and blow-up inside the LHC are not accounted for.
- All necessary improvements are implemented in the injectors (Linac4, PSB to PS transfer at 2 GeV, coupled bunch instabilities suppressed, ecloud suppressed, hardware upgraded...)
- Estimated beam degradation in the accelerator chain (based on observations in 2010):
 - PS: 5 % beam loss, 5 % transverse blow-up
 - ✓ SPS: 10 % beam loss, 5 % transverse blow-up.
- RF gymnastics being kept, imperfections are unchanged:
 - +-10 % fluctuation of all bunch parameters within a given PS bunch train.
 - Traces of ghost/satellite bunches.


Beam parameters: Comments


Beam parameters at LHC injection [50 ns]


Beam parameters at LHC injection [50 ns]

Beam parameters at LHC injection [25 ns]

Beam parameters at LHC injection [25 ns]

- Planned actions
- Status of investigations
- Estimated beam characteristics

Planning

• Summary

	Linac4	PS injector, PS and SPS	Beam characteristics at LHC injection
2011 - 2012	Continuation of construction	 Beam studies § simulations Investigation of RCS option Hardware prototyping Design § construction of some equipment TDR 	25 ns, 1.2 10^{11} p/b, ~2.5 mm.mrad 50 ns, 1.7 10^{11} p/b, ~2.2 mm.mrad 75 ns, 1.2 10^{11} p/b, \leq 2 mm.mrad
2013 – 2014 (Long Shutdown 1)	 Linac4 beam commissioning Connection to PSB ? 	 PSB modification (H⁻ injection) ? PSB beam commissioning ? Modifications and installation of prototypes in PS and SPS 	
2015 - 2017	• Progressive increase of Linac4 beam current	 If Linac4 connected: progressive increase of PSB brightness Some improvement of PS beam (Injection still at 1.4 GeV) Equipment design § construction for PS injector, PS and SPS Beam studies 	• Limited gain at LHC injection (pending PS and SPS hardware upgrades)
2018 (Long Shutdown 2)		 Extensive installations in PS injector, PS and SPS Beam commissioning 	
2019 –2021			After ~1 year of operation: beam characteristics for HL-LHC

- Planned actions
- Status of investigations
- Estimated beam characteristics
- Planning
- Summary

- MDs during 2011-2012 are essential to refine the knowledge and understanding of the injectors and to check the potential of upgrades.
- Preliminary requirement/First goal: getting confidence in beam instrumentation => Extensive debugging: progressing well, but time – consuming...
- Recent observations in 2011 tend to demonstrate that the accelerators perform better than in the previous years. <u>Not fully understood</u>.
- Need to interact with HL-LHC for selecting reachable beam parameters which are sufficient for HL-LHC to reach its goals.
- Irrelevant to the decision to connect Linac4 to the PSB during LS1 and to the choice between PSB/RCS, the beam characteristics specified for LIU will be met some time after the end of LS2 (~2020).

THANK YOU FOR YOUR ATTENTION!

Why is today's beam better than nominal?

Simple! No more blow-up along the accelerators cascade...

- PSB:
 - Improved (achromatic) optics in the Linac2 to PSB transfer line since 2005 [http://khanke.home.cern.ch/khanke/papers/2006/ab_note_2006_001.pdf]
- PS:
 - Injection trajectories
 - Working point along the whole cycle
 - Transition
- PS to SPS:
 - Transverse matching with better optics in TT2-TT10

WARNING: NO MARGIN LEFT!