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n  The background�
¨  Benefits for reducing transition energy in the SPS, as 
LHC injector�

¨  Methods for reducing the transition energy�
n  New optics based on “resonant arcs” �
n  Machine studies�

¨  Optics and non-linear model�
¨  Tune scans for resonance identification �
¨  Emittance vs. intensity, beam loss and space-charge limit �

n  Summary and perspectives �
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SPS as LHC injector 
q  LHC upgrade considerations require high bunch intensities (≥1.8e11 p/b) 

with small transverse emittances to be extracted from the SPS�
q  Known intensity limitations for LHC proton beams in SPS at present �

q  Instabilities leading to emittance blow up and/or beam loss�
q  TMCI (transverse mode coupling instability) due to transverse impedance�
q  Longitudinal instability due to loss of Landau damping,                    (stationary 

bucket) �
q  Longitudinal coupled bunch instabilities due to longitudinal impedance, �
q  Electron cloud instability�

q  Other limitations�
q  Beam loss (resonances, injection mismatch?)�
q  Beam loading in the RF systems�
q  Heating and out-gassing of machine elements #�
q  Space charge�

q  Increase in instability thresholds can be expected for the same bunch 
parameters for higher slippage factor due to faster synchrotron motion 
(                    ) and damping of instabilities �Ωs ∝

�
|η|VRF

   

(E. Shaposhnikova, 
Chamonix 2011)�
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q  Transition energy of “nominal” SPS 
optics for LHC beams is 22.8 - tunes 
of (26.13,26.18) through the cycle�

q  Above transition, slippage factor 
increases by reducing transition energy 
(increasing momentum compaction 
factor) �
�
q  Higher effect @ injection (26GeV) �
q  Smaller but appreciable effect @ 

extraction (450GeV) �

Increasing the slippage factor 
– lowering transition energy 
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Slippage factor in SPS relative to nominal optics 

Low γt optics 
Nominal optics  

q  For keeping constant longitudinal emittance, RF-voltage has to be 
increased accordingly # (already presently limited for applying 
controlled longitudinal emittance blow-up at high energies)�

q  Only partially solved by RF system upgrade 

V ∝ η



n  Transition energy (or momentum compaction factor) is 
defined as�

n The higher the dispersion oscillation in the bends, the 
lower the transition energy�

# # # #   Quadrupoles �
n Note also that, for FODO cells (SPS lattice),# #, 

meaning that lowering the transition energy implies 
lowering the horizontal tune�

#�
#�
¨  Higher slippage factor  translates to faster longitudinal motion, i.e. 

faster damping times for instabilities and longitudinal beam 
manipulation �

¨  For constant synchrotron frequency, increasing slippage factor 
allows lowering RF voltage�

¨  High intensity beams can be injected in the SPS above transition 
avoiding losses and operational complexity of transition jump 
scheme �

Transition energy 
manipulation 

1
γ2

t

= αp =
1
C

�
D(s)
ρ(s)

ds

γt ≈ Qx
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Transition energy  
change in the SPS 

q  In the past �
q  Install 2 new quadrupole families in phase advance ofμx=(2k+1)π 
for inducing dispersion waves (K. Cornelis, Chamonix 1999)�

q  Tests with “resonant integer tune” of 24 in 1998 demonstrated 
change of transition energy from 23 to ~20) (G. Arduini et al. 1998) �
q  Reduction of unstable mode amplitudes due to microwave instability 
(T. Bohl et al., 1998)�
q  “Difficult” beam conditions…�

q  New optics studies in 2010 �
q  Flipping quadrupole polarity (from FODOFODO to FODODOFO) for 
moderate increase in beta functions and notable change in γt (requires 
bipolar power supplies) �
q  Individually powering central quadrupole of 2 consecutive FODO 
cells allows to induce dispersion wave for obtaining imaginary γt 
(requires additional power supplies and increased magnet strength)�
q  For keeping dispersion low in the straights, phase advance of the 
arcs of the SPS can be reduced to a lower multiple of 2π (“resonant 
arcs”) à increase of dispersion in the arcs (no hardware limitation)�



Transition energy versus 
SPS working point 

•  D. Boussard et al., SPS improvement note No 147, 1978; Injection above transition as TT10 
was not ready for 26 GeV/c (γt~14)�

•  Low γt, 2010 - “Resonant arc” with small dispersion in long straight sections (γt~18)�

•  G. Arduini et al., CERN/SL-Note 98-001, 1998; ”Resonant tune” (γt~20)�

•  Nominal SPS working point for LHC proton beams (γt~23)�

Resonant oscillation of dispersion 
function close to the “Resonant 
integer tunes” (multiples of super-
periodicity 6) à asymptotic 
behavior of γt,  (difficult for 
routine operation)�
�
�
γt is linear function of horizontal 
tune Qx elsewhere�
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Low transition 
energy optics (Q20) 
•  New optics “Q20” vs. nominal optics “Q26”�

•  No increase in maximum β-functions but minimum β-
functions increased by 50% �

•  Notable reduction in γt allows significant increase of η 
(factor of 2.85 @injection, 1.6 @extraction)! �

•  6 integer tune units below nominal optics à same 
resonance diagram for systematic resonances (super 
periodicity of 6)! �

•  Confortable aperture for LHC beams although maximum 
dispersion almost doubled�

•  Slightly increased dispersion in straight section (only 
small impact on injection/extraction)�

�

�

�

�

Q26: 

Q20: 

Optics	   Q20	  (low	  γt)	   Q26	  (nominal)	  

Working	  point	   (20.13,	  20.18)	   (26.13,	  26.18)	  

Max.	  Dispersion	   8	  m	   4.5	  m	  

Max.	  β-‐functions	   105	  m	   105	  m	  

Min.	  β-‐functions	   30	  m	   20	  m	  

γt	   18	   22.8	  

η	  @	  26	  GeV/c	   1.8E-‐3	   0.63E-‐3	  

η	  @	  450	  GeV/c	   3.1E-‐3	   1.9E-‐3	  

Phase	  advance/cell	   3*2π/16	   4*2π/16	  



Machine studies on low 
transition energy optics 
q Prepared several “Q20” cycles with new optics�

q  Long flat bottom of about 3.7 s before beam is dumped�
q Short flat bottom of 60 ms and fast acceleration up to 450 GeV �
q  Long flat bottom and slow ramp up to 450GeV of about 10s each�

q Status�
q Machine model with integer tunes of 20 entered into the SPS 

database�
q New “zero-chromaticity” values for sextupoles and knob 

parameters defined�
q RF program slightly adapted from Q26 cycle�
q Most of the machine controls can be used �
q  Tunes corrected along the ramp for all Q20 cycles�
q  TT2-TT10 transfer-line re-matched but no significant impact yet �
q  Extraction optics and TI2 transfer-line matched and ready for 

tests�
22/06/2011 OMCM workshop 



Experimental confirmation 
of the new optics 

q Measurement of the optics functions of the new lattice�
q  Beta beating around 20% in horizontal and 10% in vertical plane�
q  Normalized dispersion in striking agreement with the model�

 measured by R. Tomas and G. Vanbavinckhove 
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Synchrotron frequency 
q  Measured synchrotron frequency from “quadrupole” oscillations at injection �

q  Same RF-voltage for both optics �
q  “Over-focusing” RF-bucket in both cases�

q  Ratio of Synchrotron frequencies ~ 1.63 corresponds to an increase in 
slippage factor η by factor 2.65 (MADX prediction: 2.86)�

Q26: �

Fs=458/2=229Hz, Qs=0.0106/2=0.0053 �

Q20: �

Fs=746/2=373Hz, Qs=0.0172/2=0.0086 �



Synchrotron frequency: 
an alternative method 

q  Recording sum signal from turn-by-turn BPM system @ injection �
q  Estimating synchrotron tune by refined Fourier analysis (NAFF)�
q  Average of 2Qs=0.0176±0.0009 �
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Fast tune determination 
q  Combining turn-by-turn 

positions for all BPMs within a 
turn �

q  Analyzing all data for a 
number of turns with NAFF�

q  Convergence to the tune 
(including the integer!) in 
15-20 turns, even for 20% of 
the BPMs failing �

q  Completely model independent �
q  Overcome decoherence (or 

evaluate the tune dependence 
on it)�

q  A rapid way to measure tune-
shift with amplitude or 
chromaticity�
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Nonlinear chromaticity 
in the new lattice 

q  Sextupole strengths set with new chromaticity knobs; measurement with low intensity bunch�
q  MADX-PTC nonlinear model of SPS adapted/fitted to the measurements on new optics and 

compared with measurements on nominal optics�
q  Sextupole components in dipoles in rough agreement between Q20 and Q26 �
q  Octupole components (assumed to be located in quadrupoles) change sign from Q20 to Q26 model! �
q  Decapole components in dipoles in rough agreement between Q20 and Q26 �

q  Chromaticity sextupole strengths needed are much smaller (1/3) in Q20 optics due to: 
smaller natural chromaticity, much bigger dispersion function at sextupole locations, partial 
compensation of chromaticity due to sextupule components of main dipoles�

q  On-going studies including tune-shift with amplitude and higher order chromaticity term 
measurements as additional nonlinear fit parameters�

(see previous work  
G. Arduini et al. 
PAC2005) 



Nonlinear dynamics 
simulations 

q  Nonlinear model as obtained from the measurement of nonlinear chromaticity �
q  Assumed misalignments, random errors in the main components and random errors in the multipole components such 

that the measured nonlinear chromaticity is reproduced (rms orbit ≈ 2mm, β-beat ≈ 10%)�
q  Dynamic aperture much bigger than physical aperture �

q  Frequency map analysis allows to visualize the tune-shift with amplitude and to identify resonances�
q  Tracking particles with PTC in 5D with initial conditions in configuration space  evenly spaced in action �
q  Aperture model included in the simulation �
q  Color-code indicates the tune diffusion coefficient d in logarithmic scale, �
q  Big diffusion coefficient d means chaotic motion in phase space�
q  σ (beam size) is calculated for on-momentum particles with normalized emittance εx = εy = 3 μm �
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Nonlinear dynamics 

simulations (cont.) 
q  Tune-scan for a global picture of machine resonances�

q  Frequency Map produced for each working point and diffusion coefficients’ sum for all particles (D) is 
computed�

q  For direct comparison, same nonlinear model (Q20) assumed for both optics variants�
q  Orbit corrected (rms orbit ≈ 2mm, β-beat ≈ 10%) before changing the tune �
q  Chromaticity corrected to ξx=ξy=0.1 using sextupole “knobs” of the corresponding case�
q  Coupling not corrected, octupoles are always switched off�

q  Observations�
q  Same resonances can be identified in both cases�
q  Resonances appear to be stronger in the nominal optics, especially the third order ones à Modified 

phase advance between chromatic sextupole families in low γt optics seems not to be an issue�
q  Note the bigger stop-band widths for the integer resonances in the nominal optics �
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Experimental Tune 
scans – Method* 

q  Study the resonance behavior around working points of nominal and low γt (Q20) optics @ injection �
q  Strength of individual resonance lines can be identified from the beam loss rate, i.e. the derivative of 

the beam intensity at the moment of crossing the resonance�
q  Vertical tune is scanned from about 0.45 down to 0.05 during a period of 3s along the flat bottom�
q  Low intensity 4-5e10 p/b single bunches with ε~1.2 μm (“single particle behaviour”) injected at 

nominal tunes�
q  Horizontal tune is constant during the same period within a super-cycle (scanned from cycle to cycle)�
q  Tunes are continuously monitored using the BBQ (tune post-processed with NAFF) and the beam 

intensity is recorded with BCT �

* See also method from G. Franchetti et al. in the PS 



Tune Scans - Results 
q  Resonances in the low γt optics �

q  Normal sextupole Qx+2Qy is the 
strongest �

q  Skew sextupole 2Qx+Qy quite strong !!??�
q  Normal sextupole Qx-2Qy, skew 

sextupole at 3Qy and 2Qx+2Qy fourth 
order visible�
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q  Resonances in the nominal optics �
q  Normal sextupole resonance Qx+2Qy is the 

strongest �
q  Coupling resonance (diagonal, either Qx-Qy or some 

higher order of this), Qx-2Qy normal sextupole �
q  skew sextupole resonance 2Qx+Qy weak compared 

to Q20 case�
q  Stop-band width of the vertical integer is stronger 

than in Q20 optics, as predicted by simulations�



Emittance vs intensity  
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q  Beams injected and accelerated in single and multi-bunch mode up to top energy 
without any significant emittance degradation or losses�

q  Large effort to quantify SPS emittance blow-up for high-intensity single bunches�
q  Simultaneous measurements of vertical emittance in PS and SPS�

q  At extraction (just before bunch rotation) in PS and end of flat bottom in SPS�
q  Emittance blow-up for intensities >1.5e11 p/b with peak values of 25% at 3e11 p/b�
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Beam loss @ flat 
bottom 
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q  Low γt optics �
q  Low losses (up to 4% for 3e11 p/b) from 

injection to end of flat bottom�
q  Flat intensity profiles even for high 

intensity but injection losses increase�

q  Nominal optics�
q  Significantly increasing losses for 

intensities above 2.5e11 p/b up to 
10%�

q  Losses at injection and along the 
flat bottom for high intensities�



High intensity 
tune scan 

q  Tune scan with high intensity small emittance single bunches�
q  “Space charge” tune scan with intensities of ~2.5-3e11 p/b and injected norm. emittances 

of 1.3-1.5μm�
q  Measuring emittance at flat bottom end as function of injected emittance and total 

losses �
q  First scan of vertical tune with fixed horizontal tune of Qx~26.18 �
q  To be completed with further scans for different horizontal tune settings�
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Summary and perspectives 
q  New low transition energy optics proposed and implemented in SPS for 

machine studies during 2010-2011, showing promising results�
q  Single bunches injected and accelerated successfully with intensities up to 

3.3e11 p/b�
q  No clear triggering of TMCI instability even for low chromaticity settings 

with only small emittance blow-up �
q  Transverse emittances below 2.5μm at the end of a long cycle for single 

bunches with intensities of 3e11 p/b with moderate losses�
q  Multi-bunch injection (12 bunches) and acceleration for nominal LHC 

transverse characteristics�
q  Yet another attempt to build a non-linear machine model for SPS and 

working point optimization for high intensity�
q  Ongoing studies and questions�

q  Emittance blow-up for high intensity single bunches in both optics (“space 
charge limit”)�

q  Setup of extraction for new optics to LHC�
q  Large simulation effort for qualifying the impact on instabilities, e-cloud, 

space charge�
q  Reaching acceptable LHC beam parameters with the available RF-voltage?�
q  Experimental confirmation of expected stability improvement for multi-bunch 

beams (LHC bunch trains)?�


