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Focusing errors and Optics Measurements

Errors in the focusing elements lead to optics perturbation with bad consequences:

• unpredictable response to machine parameter change

• uncontrolled beam size (aperture, luminosity...)

Today BPM systems allow sophisticated techniques and several methods for measuring

the linear optics and fitting measurement to a model have been developed.

Two main philosophies:

• Closed Orbit response to the excitation of correctors (not the topic of this talk).

The (usually) large number of constraints allows to compute accurately the unknown

parameters at BPMs and correctors by simple computations. It is time consuming,

Tevatron is the largest machine were it is applied .

• Analysis of beam oscillations excited by single kicks or AC dipoles (TBT analysis);

data acquisition is fast and, unlike the previous method, it may be applied in fast

cycling machines.
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Optics from Fourier Analysis of TBT data

(single kick)

The Fourier analysis of TBT data has been first applied at LEP in 1992 as a tool for

measuring the uncoupled linear optics, the very first measurements of phase advance

between 6 tune monitors from TBT dating back to 1988 at LEAR (CERN).

At Fermilab this technique is mainly used for measuring

• Tevatron linear coupling at shot set-up set up and, when needed, along the ramp;

• Booster tunes and linear coupling.
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Linear Coupling through TBT Analysis

In the presence of coupling , the excitation of one of the two modes excite an oscillation

in the other mode too.

Resulting vertical motion (first order approximation) following a horizontal kick
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Horizontal motion following a vertical kick
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The (periodic) functions w± are related to the distribution of coupling sources by

w±(θ) = −
∫ 2π

0

dθ′
C±(θ′)

4 sinπQ±
e−iQ±[θ−θ′−πsign(θ−θ′)]

with Q± ≡ Qx ±Qy and
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R
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)]}
ei(Φx±Φy)

(R ≡ machine radius). The functions w̃± ≡ w±eiQ±θ

• are constant in coupler free regions

• experience a discontinuity −iC±`/2R at coupler locations (diagnostics tool).

• are constant on the resonances Qx ±Qy = int.
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The FFT of yj at Qx, Y j(Qx), for a horizontal kick (Xj(Qy) for a vertical one) is

proportional to the coupling functions w±(θj).

Assuming BPMs tilt small or already known a the Fourier analysis of the TBT data gives

2 real equations in 4 unknowns for each BPM.

When between two consecutive monitors there are no strong source of coupling, the

four equations can be solved in favor of w±(θj) = w±(θj+1).

A discontinuity in the values computed by using 3 adjacent BPMs reveals the presence

of a coupling source.

aunder some circumstances it could be evaluated afterwards by requiring results to be “smooth”
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Tevatron Coupling functions (November 2005 data)
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Discontinuities are visible around 1000 m (skew quad SQA0 location) and 4000 m (D16)

where a badly tilted quadrupole was found.
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Booster

The Fermilab Booster is a 474 m long machine accelerating protons from 0.4 to 8 GeV

kinetic energy in 33 ms (about 22000 turns). Transition energy is crossed at about turn

#9480.

As at most low energy fast ramping synchrotrons measurements are not easy.

Nominal Booster tunes are Qx=6.75 and Qy=6.85.

• Correction of the difference linear coupling resonance is necessary for setting the

tunes close to each other, thus providing room for space charge detuning in presence

of large beam intensity demanded by the neutrino physics program.

• The sum linear coupling resonance is believed to be source of vertical emittance

growth.

For these reasons is desirable to have a reliable tool for on-line measurament and possibly

compensation of linear coupling.
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The application for measuring the Booster tunes from TBT data has been improved by

introducing
• phased sum for determining beam tunes

• two peaks analysis for identifying peaks.

Two sets of measurement are performed, by kicking the beam horizontally and vertically.

In each plane the tune is determined by analyzing the signal in the plane of kick.

Phased Sum

The oscillation propagates around the ring as

z(k)
n =

1

2
akz e

i[2πQx(n−1)+µk
z+ψz0] + c.c. (z = x, y)

(k ≡ BPM index). When the quantity

z̃n ≡ ΣM
k=1z

(k)
n e−iµ

(k)
z

(M ≡ number of BPMs) is Fourier-analysed, rather than z(k)
n , signal-to-noise ratio is

improved by a factor
√
M .
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Two Peaks Algorithm

A second problem is the tune identification. Suggested algorithm:

• phased sum is Fourier analyzed;

• spectrum is interpolated and oscillation damping time is evaluated;

• largest peak is subtracted from original signal, taking into account damping;

• the new signal is again Fourier analyzed.

As a result for each plane a set of two tune “candidates”, with corresponding amplitudes

|Ax,1|, |Ax,2|, |Ay,1| and |Ay,2|, is found.

• Is the distance of the two largest peaks, |Ax,1| and |Ay,1| larger then the resolution

of the CFT? Tunes are identified: qtruex =qx,1 and qtruey =qy,1

• Is it smaller? 2th peaks are compared:

|Ax,2|/|Ax,1| > |Ay,2|/|Ay,1| ⇒ qtruex =qx,2 and qtruey =qy,1

|Ax,2|/|Ax,1| < |Ay,2|/|Ay,1| ⇒ qtruex =qx,1 and qtruey =qy,2
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• The Booster has 48 self-triggered BPMs (stripline devices) measuring beam position

in both horizontal and vertical planes. TBT acquisition has improved but it is not

fully reliable.

• Acquisition is done during ramping. The beam is kicked either horizontally or

vertically each 500 turns; the kicker voltage is constant along the ramp.

• Orbit has a large excur-

sions; closed orbit is piece-

wise computed and sub-

tracted from raw data.
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Phased-sum analysis allows to detect the beam tunes in conditions where other algo-

rithms fail.
Single BPM FT Phased sum FT
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Combined CFT allowed detecting a

mis-steering of the tunes during

Booster set up after a shut-down.
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“2-peaks-algorithm” picks the right

value for qx at 9.2 ms.
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BOOSTER COUPLING MEASUREMENT
Coupling coefficients on ramp
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Coupling functions vs. position
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Linear Optics
Twiss functions on ramp
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Spatial Fourier Analysis for a good data set shows a peak where expected
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Subtracting the component h=14 the beta-beating is reduced from 26% to 10%.
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Booster and Tevatron both have no AC dipole. Signal decoherence: is it a limit?
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In absence of noise, decoherence results in a under-estimation of the oscillation ampli-

tude with no consequences for the Twiss function measurement. Similarly for coupling

evaluation.
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Fourier Analysis vs. ICA

ICA uses a method for blind source separation applied in signal processing for recovering

a set of signals of which only linear mixtures at discrete time steps are known, under

the assumption of narrowband and independent sources.

Vector ~X(ti) containing the measurements at M stations at time ti is written as

~X(ti) =


x1

x2

. . .

xM

 = A~S(ti) + ~N (ti)

M ≡ number of BPMs

N ≡ number of sources

i = 1, ..P P ≡ number of turns

where ~S(t) describes the N sources, AM×N is the mixing matrix and ~NM contains

the measurement noise.
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Logical steps:

• SVD decomposition of ~X covariance matrix Cx(0)

Cx(n = 0) = < Xj(ti)Xk(ti + nT ) > =

U1 0

0 U2

Σ1 0

0 Σ2

UT
1 0

0 UT
2


and keep only the Ns singular values above threshold

• construct
VNs×M ≡ Σ

−1/2
1 UT

1 and ξNs×P ≡ V X

• Cs(n) is diagonal and related to Cξ(n) by a similarity transformation

Cξ(n) = [Σ
−1/2
1 UT

1 A]Cs(n) [Σ
−1/2
1 UT

1 A]T ≡WCs(n)W T

• find the transformation, W , diagonalizing simultaneously all Cξ(n), with n ∈
[n1, nm]

• (important part of) mixing matrix A and source matrix S are

A = V −1W S = W TV X
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Betatron motion:
 Sn,k

Sn+1,k

 =

cos 2πQn(k − 1)

sin 2πQn(k − 1)

 (sources)

 Ajn

Aj,n+1

 =

an

√
βjn sin (µjn + Φn)

an

√
βjn cos (µjn + Φn)

 (mixing)

Twiss functions

βi,n = a2
n(A2

ni +A2
n̄i) µi,n = φn + tan−1

(
A2

ni

A2
n̄i

)
where an and φn are constant of motion and n and n̄ are the indeces corresponding

to the betatron motion component a.

As for the Fourier analysis a model is needed for computing the scaling factor a.

It sounds as ICA could be more powerful than the simple Fourier analysis in presence of

“spurious” sources as synchrotron side-bands.

arecognized by a Fourier analysis of the rows of S
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TBT with band limited noise q = [0.73, 0.74] (nominal optics)

no damping, 256 turns
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adding damping, 64 turns
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ICA is able of finding the (disturbance) tunes also with few turns, no advantage for

optics meaurement.
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Comparison on measured data (v-ping)

(same data as in slide 18)
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Conclusions

For the FNAL Booster a reliable on-line tool for detecting and identifying tunes was

needed. Fourier analysis of TBT data is a simple tool for measuring machine tunes,

linear optics and coupling.

• Tune detection has been improved by analyzing the phased sum. This requires the

knowledge of the phase advance, not required by ICA.

• The 2-peaks-algorithm seems resolving the remaining unclear cases.

• The coupling measurement algorithm has been implemented in the Booster console

application.

• The TBT Fourier analysis allowed detecting Booster

– tune mis-steering;

– correction quadrupole circuits wiring errors.

• Next step: beam-based calibration of skew quadrupole circuits and systematic cor-

rection of linear coupling.
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