

Optics measurements, corrections and modeling for high performance storage rings CERN, 21<sup>th</sup> June 2011

# LHC MAGNET MODELING

E. Todesco CERN, Geneva Switzerland

Acknowledgements: the FiDeL team





## CONTENTS

- Strategy
  - FiDel parametrization
  - LSA
  - WISE inputs
  - Cycling
- Issues
  - Optics and Beta beating
  - Chroma
  - Tune decay



- The LHC magnet zoo includes 20 different superconducting magnets and 10 different resistive magnets
- A decomposition of the field quality (main component and multipoles) has been proposed [N. Sammut, L. Bottura et al, Phys. Rev. STAB]
  - Static: geometric (linear term) + saturation of the iron + magnetization
  - Dynamic: decay at injection, snapback at the beginning of the ramp
- Magnetic measurements have been used to derive the coefficients of this parameterization
  - For each magnet family up to 10-20 coefficients for each quantity (main component, multipoles)
- Please note: from 2 TeV on, model is much more precise
  - Magnetization, dynamic effects significant at 450 GeV and depend on powering history injection is more challenging!



• Example: FiDeL decay component, three parameters

$$\Delta b_{3}(t;c,\tau,d) = c \left[ d \left( 1 - e^{-\frac{t}{\tau}} \right) + (1 - d) \left( 1 - e^{-\frac{t}{9\tau}} \right) \right]$$





FiDeL fit of b3 versus I (left) and b3 versus time in the LHC [L. Bottura, N. Sammut et al]



- The FiDeL equations are implemented in the LHC control system
- FiDeL coefficients are imported locally
- Quantities for each circuit are evaluated
- FiDeL coefficients are used and for each beam process one generates tables with settings (time-current)
- Correctors:
  - Correction algorithms are implemented in LSA and the settings are estimated with field model
    - One example: local correction of  $b_3 b_4 b_5$  in dipoles
  - Other correctors rely on measurements
    - Example: orbit
  - Others have both ways (both fixed settings and trims on the top)
    - Example: tune, chromaticity



# STRATEGY: SIMULATING THE REAL LHC

- Field quality in the magnets fit through FiDeL
- Lay out of the machine
- Alignment of the magnets
- Uncertainties



A WISE man: Socrates [I<sup>st</sup> century AD, probab. copy of Lysippos]

- All these information are put together through an ad-hoc code (WISE [P. Hagen]) to create input files for MAD
  - The machine is modelled at best, at the level of individual magnet (not circuits as in LSA)
- Several users
  - Used to simulate the real machine with imperfections (on line model)
  - Used to check scenarios for upgrade
  - Used to check the effectiveness of sorting ...



#### STRATEGY SUMMARY





- The cycling strategy is the key of the machine magnetic reproducibility
- All sectors have to be precycled together !
  - At the moment we have two varying parameters
    - Time at flattop (from 0 to 15 h)
    - Preparation time at 100 A (typically 20 minutes, can be several hours)



Precycle (left) and preparation time versus flattop in May 2011[N. Aquilina]



## MAIN ISSUES

#### **•** 2010

- Beta beating stemming from resistive quadrupoles [see talk by Glenn]
  - Action: new measurements and model improvement
  - Result: much lower beta beating
- **Reproducibility**: review of precycling strategy
  - Found that some magnets were not correctly precyled, and were on wrong hysteresis branch [P. Hagen]
  - Action: lower reset currents
- **2**011
  - Decay of chromaticity on time constants much longer than expected (1000 s instead of 200 s) – so it affects operation [W. Venturini et al.]
    - Action: include the correction of decay at injection plateau
    - FiDeL coefficients changed according to beam measurements



- Significant decay after times larger than one hour not expected
- But the functional form works
  - We update the model coefficients with fit of beam measurements
  - We also try to understand ... (additional magnetic measurements)



Measured decay of chromaticity during 3 h injection [N. Aquilina]



#### • In this work, a staged approach is essential

- Example: chromaticity
  - We started with static model only → reproducibility within 20 units, correction done manually by operators (2010)
  - We included a fixed correction of decay (independent of powering history) → reproducibility within 5 units (April 2010)
  - We now are including correction of decay with powering history → aim at reproducibility within 2 units (July 2010)
- Example: cycling
  - In early phases (2009) several trips of circuits → cycling strategy was not always followed to avoid wasting time
  - In 2010 wrong cycling proved to have a significant effect on reproducibility and circuits were more stable → cycling strategy enforced
  - Now precycling always correctly followed



## MAIN ISSUES

- 2011 (continued)
  - Unexpected decay of tune at injection
    - Action: include the tune correction of decay at injection plateau
    - FiDeL coefficients estimated through beam measurements
  - Unexpected larger influence of powering history on chroma decay
    - Action: include the dependence on powering history
    - FiDeL coefficients based on beam measurements (analysis on going)
    - Complementary magnetic measurements
  - Branching: magnetization is implemented as a single branch (so it models only positive dI/dt)
    - This for the moment is not critical we had it implemented but we removed since it created jumps in powering
    - For going to β\* below one meter some quads with dI/dt<0 will need ad hoc trim



- The LHC magnetic model is pretty complex
  - A staged approach is needed do only what is needed otherwise you get lost
- The magnetic measurements provide an extremely solid base
  - Huge efforts carried out during the production
    - To know, and to correct if needed and possible
  - Nominal settings provide good optics
  - New optics commissioned in a few hours!
- When needed, trims based on beam measurements
  - Powerful instrumentation and beam diagnostic techniques are a key element
  - Possibility of having additional magnetic measurements





