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Action and Phase Jump Analysis

• Action and phase jump analysis has been used to
estimate strengths of skew quadrupole correctors
at RHIC (PAC 01, pg 3132).

• It has been tested using orbit data with known
skew and quad errors (EPAC 04, pg 1553).

• It has been used to estimate known Non linear
components with SPS data (PAC 2005, pg 2012 ).

• It will be describe how action and phase jump
analysis can be adapted to measure and correct
linear error at LHC IRs.
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Errors from Action and Phase Analysis
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Linear Components of the Errors

θx = −
∆Byl

Bρ
, θy =

∆Bxl

Bρ

For one magnet (keeping only linear components):
θx = A1y − B1x

θy = A1x+ B1y

Kick can not be measured for a single magnet.

For a triplet (more realistic):
θtx = At

1y − Btx
1 x

θty = At
1x+ B

ty
1 y

At
1 andBt

1 enough for linear correction.
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A
t

1
and Coupling Correction

• To correct local coupling useK1Sc ∗ Lc = −At
1.

• One beam trajectory is simulated in MADX using
LHC lattice and the follow. skew errors in IR1:
K1S(Q1) = K1S(Q2) = K1S(Q3) = 10−5m−2

• Action and phase analysis of the trajectory gives
At

1 = 1.78 ∗ 10−4m−1 andK1Sc = −0.0008m−2.

• Correction is tested exciting an horizontal
trajectory and measuring the coupled orbit in the
opposite plane.
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Verification of Coupling Correction
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B
t

1
and Gradient Error Correction

• Since theBt
1 are different for both planes, at least

two quads should be tweak to compensate all
gradient errors in the triplet.

• The two values for gradient compensation can be
found by inverting the equations:

Btx
1 =

∆K1c(Q1)
∫

Q1

βxds+∆K1c(Q2)
∫

Q2

βxds

βxe

B
ty
1 =

∆K1c(Q1)
∫

Q1

βyds+∆K1c(Q2)
∫

Q2

βyds

βye
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Simulation of Gradient Error Correction

• One beam trajectory is simulated in MADX using
LHC lattice and the follow. grad errors in IR1:
∆K1(Q1) = ∆K1(Q2) = ∆K1(Q3) = 10−5m−2.

• Action and phase analysis of the orbit gives
∆K1c(Q1) = 5.47 ∗ 10−5m−2 and
∆K1c(Q2) = 4.21 ∗ 10−5m−2.

• Correction is tested looking at the betabeat.
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Verification of Gradient Error Correction

0 5000 10000 15000 20000 25000 30000
s[m]

-0,4

-0,2

0

0,2

0,4

D
el

ta
 β x/β

x

Betabeat grad errors in IR1
Betabeat grad errors + corr in IR1

MADX Simulation
LHC collision lattice

– p.9/17



Influence of BPM Noise

• Gaussian errors of 200µm were introduced in the
simulations

• Calculations of correction settings are sensitive to
the noise (30% a 45% variation).

• Btx
1 andBty

1 are much less sensitive to noise.

• Use as many turns as possible to statistically
estimateBtx

1 andBty
1 and then calculate de

correction settings (1% a 10% variation for 24
orbits).
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Skew Quad and Gradient Errors

• Only one beam trajectory has been used for error
calculation until now.

• The general case involve skew quad and gradient
errors simultaneously and hence at least two
orbits (out of phase) are needed.

θx1
= At

1y1 − Btx
1 x1

θy1 = At
1x1 +B

ty
1 y1

θx2
= At

1y2 − Btx
1 x2

θy2 = At
1x2 +B

ty
1 y2

• In practice, four orbits are used.
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Influence of Phase Difference
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Conclusions

• It is possible to find the appropriate settings to
correct linear errors at IR triplets with action and
phase analysis.

• However, the calculated settings are sensitive to
the current level of noise present in the LHC
BPMs.

• This problem can be overcome using as many
trajectories as possible to statistically calculate
Btx

1 andBty
1 first, and then the corrector settings.

• Still work to do for lattices with high beta* ( e.g.
injection lattice).
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Action and Phase Analysis on a RHIC Trajectory
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Action and Phase Jump Analysis in LHC
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