Proposed Procedure to Correct Linear Errors at the LHC IRs using Action and Phase Analysis
J. Cardona and O. Blanco, Universidad Nacional de Colombia

Thanks to: R Tomás, G. Vanbavinckhove, R. Calaga, R. Miyamoto and C. Alabau, CERN

- Action and phase jump analysis has been used to estimate strengths of skew quadrupole correctors at RHIC (PAC 01, pg 3132).
- It has been tested using orbit data with known skew and quad errors (EPAC 04, pg 1553).
- It has been used to estimate known Non linear components with SPS data (PAC 2005, pg 2012).
- It will be describe how action and phase jump analysis can be adapted to measure and correct linear error at LHC IRs.

Errors from Action and Phase Analysis

$$
\theta_{x}=\sqrt{\frac{2 J_{L}+2 J_{r}-4 * \sqrt{J_{L} J_{R}} \cos \left(\delta_{L}-\delta_{R}\right)}{\beta\left(s_{\theta}\right)}}
$$

Linear Components of the Errors

$$
\theta_{x}=-\frac{\Delta B_{y} l}{B \rho}, \quad \theta_{y}=\frac{\Delta B_{x} l}{B \rho}
$$

For one magnet (keeping only linear components):

$$
\begin{aligned}
& \theta_{x}=A_{1} y-B_{1} x \\
& \theta_{y}=A_{1} x+B_{1} y
\end{aligned}
$$

Kick can not be measured for a single magnet.
For a triplet (more realistic):

$$
\begin{aligned}
\theta_{x}^{t} & =A_{1}^{t} y-B_{1}^{t x} x \\
\theta_{y}^{t} & =A_{1}^{t} x+B_{1}^{t y} y
\end{aligned}
$$

A_{1}^{t} and B_{1}^{t} enough for linear correction.

- To correct local coupling use $K 1 S_{c} * L_{c}=-A_{1}^{t}$.
- One beam trajectory is simulated in MADX using LHC lattice and the follow. skew errors in IR1: $K 1 S(Q 1)=K 1 S(Q 2)=K 1 S(Q 3)=10^{-5} m^{-2}$
- Action and phase analysis of the trajectory gives $A_{1}^{t}=1.78 * 10^{-4} m^{-1}$ and $K 1 S_{c}=-0.0008 m^{-2}$.
- Correction is tested exciting an horizontal trajectory and measuring the coupled orbit in the opposite plane.

Verification of Coupling Correction

- Since the B_{1}^{t} are different for both planes, at least two quads should be tweak to compensate all gradient errors in the triplet.
- The two values for gradient compensation can be found by inverting the equations:

$$
\begin{aligned}
B_{1}^{t x} & =\frac{\Delta K 1_{c}(Q 1) \int_{Q 1} \beta_{x} d s+\Delta K 1_{c}(Q 2) \int_{Q 2} \beta_{x} d s}{\beta_{x e}} \\
B_{1}^{t y} & =\frac{\Delta K 1_{c}(Q 1) \int_{Q 1} \beta_{y} d s+\Delta K 1_{c}(Q 2) \int_{Q 2} \beta_{y} d s}{\beta_{y e}}
\end{aligned}
$$

- One beam trajectory is simulated in MADX using LHC lattice and the follow. grad errors in IR1:
$\Delta K 1(Q 1)=\Delta K 1(Q 2)=\Delta K 1(Q 3)=10^{-5} m^{-2}$.
- Action and phase analysis of the orbit gives
$\Delta K 1_{c}(Q 1)=5.47 * 10^{-5} m^{-2}$ and
$\Delta K 1_{c}(Q 2)=4.21 * 10^{-5} \mathrm{~m}^{-2}$.
- Correction is tested looking at the betabeat.

Verification of Gradient Error Correction

-1810-2010*
NACIONAL
SEDEBOGOTÁ

- Gaussian errors of $200 \mu \mathrm{~m}$ were introduced in the simulations
- Calculations of correction settings are sensitive to the noise (30\% a 45% variation).
- $B_{1}^{t x}$ and $B_{1}^{t y}$ are much less sensitive to noise.
- Use as many turns as possible to statistically estimate $B_{1}^{t x}$ and $B_{1}^{t y}$ and then calculate de correction settings (1% a 10% variation for 24 orbits).

Skew Quad and Gradient Errors

- Only one beam trajectory has been used for error calculation until now.
- The general case involve skew quad and gradient errors simultaneously and hence at least two orbits (out of phase) are needed.

$$
\begin{aligned}
\theta_{x_{1}} & =A_{1}^{t} y_{1}-B_{1}^{t x} x_{1} \\
\theta_{y_{1}} & =A_{1}^{t} x_{1}+B_{1}^{t y} y_{1} \\
\theta_{x_{2}} & =A_{1}^{t} y_{2}-B_{1}^{t x} x_{2} \\
\theta_{y_{2}} & =A_{1}^{t} x_{2}+B_{1}^{t y} y_{2}
\end{aligned}
$$

- In practice, four orbits are used.

Influence of Phase Difference

Phase difference between 90 to 270 degrees seems to be optimal for estimation of $B_{1}^{t x}$ and $B_{1}^{t y}$

- It is possible to find the appropriate settings to correct linear errors at IR triplets with action and phase analysis.
- However, the calculated settings are sensitive to the current level of noise present in the LHC BPMs.
- This problem can be overcome using as many trajectories as possible to statistically calculate $B_{1}^{t x}$ and $B_{1}^{t y}$ first, and then the corrector settings.
- Still work to do for lattices with high beta* (e.g. injection lattice).

Acknowledgments

- Bogotá Research Division (DIB) at Universidad Nacional de Colombia for financial support while at CERN.
[1] J. Cardona, S. Peggs, "Linear and Nonlinear Magnetic Error Measurements using Action and Phase Jump Analysis", Physical Review ST AB 12, 014002 (2009).
[2] J. Cardona, R. T. Garcia, "Non Linear Error Analysis from Orbit Measurements in SPS and RHIC", PAC'05, Knoxville, Tennesse (2005).
[3] J. Cardona, S. Peggs, F. Pilat, V. Ptitsyn, " Measuring Local Gradient and Skew Quadrupole Errors in RHIC IRs" ,EPAC’04, Lucerne, Switzerland (2004).
[4] J. Cardona, "Linear and Non Linear Studies at RHIC Interaction Regions and Optical Design of the Rapid Medical Synchrotron", Ph.D. thesis, Stony Brook University, (2003).
[5] V. Ptitsyn, J. Cardona, F. Pilat, J.-P. Koutchouk, "Measurement and Correction of Linear Effects in the RHIC Interaction Regions", PAC'01, Chicago, Illinois (2001).

$$
x_{i}=\sqrt{2 J_{i+1} \beta_{x i}} \sin \left(\psi_{x i}-\delta_{i+1}\right),
$$

$$
x_{i+1}=\sqrt{2 J_{i+1} \beta_{x i+1}} \sin \left(\psi_{x_{i+1}}-\delta_{i+1}\right)
$$

Action and Phase Jump Analysis in LHC

