## Chromatic Optics, Measurments

M. Aiba, M. Bai, R. Calaga, R. Miyamoto, G. Robert-Demolaize, R. Tomas, G. Vanbavinkove, Y. Luo, BNL & CERN OMCM, CERN, June 20-22 2011

- Motivation
- LHC measurements, 2010-11
- RHIC measurements, 2009 & 2011

Huge Ack: Operations at RHIC & LHC

## Motivation

#### LHC:

For  $\beta^* < 30$ cm (upgrade), chromatic limit with existing sextupoles is reached and hierarchy of collimation system may not be preserved.

Correction of chrom  $\beta$ -beating, non-linear chrom and spurious dispersion with a new ATS scheme<sup>†</sup>.

- Arc cell phase adv (left & right of IP)  $\rightarrow \pi/2$
- New phase adv at all 8 IRs & increased arc  $\beta\text{-functions}$

#### RHIC:

Large chromatic  $\beta\text{-beat}$  for  $\leq 0.7m$  optics. Aiming at  $\beta^{*}$  ~0.5m

- With heavy ions, rebucketing at top energy increases momentum spread by x3
- For protons, tune space is limited for present working point (3<sup>rd</sup> & 10<sup>th</sup>). DA and lifetime "in principle" can be improved with chromatic corrections

# RHIC & LHC





2 IPs,  $\beta^* = 65 - 70$ cm Recent tests,  $\beta^* \le 60$  cm

Future,  $\beta^* \leq 50$  cm ?

4 IPs,  $\beta^* = 150$  cm, 300-1000 cm 7 TeV,  $\beta^* = 55$ cm (perhaps less)

Upgrade,  $\beta^* = 15$ cm (perhaps less)

## Definitions

Montague, LEP Note 165

Linear Chromatic functions:

$$W_{x,y} = \sqrt{a_{x,y}^{2} + b_{x,y}^{2}}$$
$$a_{x,y} = \frac{1}{\beta} \frac{\Delta \beta}{\Delta p/p} \qquad b_{x,y} = \frac{\Delta \alpha}{\Delta p/p} - \alpha * a_{x,y}$$

**Typical Procedure** 

- Beam excitation (kicker/ac dipole) at different radial offsets
- Compute  $\beta$ -functions using standard tools (see Glenn's talk)
- Fit (typically linear) vs. dp/p to compute chromatic optics

# SPS Measurment, 2003

Systematic difference between model

& measurements, <u>source unknown</u>



G. Arduini et al. PAC05

### Chromatic Optics Measurements

|                                           | Year | E [GeV]  | β* [m]                         |  |
|-------------------------------------------|------|----------|--------------------------------|--|
| <b>LHC</b><br>(0.3-0.7×10 <sup>-4</sup> ) | 2010 |          | 10-12, <b>3.5</b>              |  |
|                                           | 2011 | 450-3500 | 10-12, <b>1.5</b> <sup>†</sup> |  |
| <b>RHIC</b><br>(1-2×10 <sup>-3</sup> )    | 2009 | 26-250   | 7.5, <b>0.7</b>                |  |
|                                           | 2011 | 100      |                                |  |

<sup>†</sup>Data not useful, need to remeasure

### LHC: Chromatic $\beta$ -beat @0.45 TeV



Error bars suppressed

Approx  $\pm 3\%$  at  $1 \times 10^{-3}$ 



Longitudinal Position [km]

## W-functions, LHC 3.5 TeV



## 2011, $\beta^* = 1.5 \text{m}$ @3.5 TeV



Beating-beating < 20% with local corrections between 3.5-1.5m



Unfortunately, beams lost due to loss monitor interlock, +50Hz

# RHIC MEASUREMENTS, 2009

|                               | Blue                          |           | Yellow    |           |
|-------------------------------|-------------------------------|-----------|-----------|-----------|
|                               | 26                            | 100/250   | 26        | 100/250   |
| # bunches                     | 6 × 6                         | 12 × 12   | 6 × 6     | 12 × 12   |
| Intensity [10 <sup>11</sup> ] | 0.01 (Gold) and 1.0 (protons) |           |           |           |
| Emittances [µm]               | 12/20                         |           | 10/?      |           |
| Tunes [Qx/Qy]                 | 0.74/0.72                     | 0.74/0.72 | 0.72/0.74 | 0.72/0.74 |
| Chroms [ξx/ξy]                | 2.6/1.5                       | 2.0       | 2.0       | 2.0       |
| dp/p offsets                  | $\sim 1-2 \times 10^{-3}$     |           |           |           |

#### For Au 2011:

Qx, Qy: 0.23, 0.22 Vertical Chromaticities: ?

## BEAM LOSSES DURING MEASUREMENTS



Phase-Beat @250 GeV



Phase-Beat @250 GeV



Longitudinal Position [km]

## Chromatic $\beta$ -beat Injection

#### Protons, 2009



Only Blue ring available for injection measurements ( $\pm$  5% beating at 1 x 10<sup>-3</sup>)

Published in the IPAC10 Proceedings

## Chromatic $\beta\text{-beat}$ at 250 GeV



### Chromatic $\beta\text{-beat}$ at 100 GeV



### Normalized Dispersion @100 GeV



Dispersion, automatic Outcome from measurement (**Au-2011**)

Dispersion beating is not negligible,  ${\sim}15\%~\text{rms}$ 

RMS Dy  $\sim$  10 cm





 $\gamma$ -T quads to locally perturb  $\{\beta_{x,y}, D_x\}$  & compensate tunes  $\gamma$ -T next to focusing quads &  $\phi_{x,y} \sim 90^0$  &  $\{\beta_{x,y}, D_x\}$  are approx equal

Use  $\gamma\text{-}T$  quads to adjust  $W_{_{\!X,y}} functions$  In 2004,  $\gamma\text{-}T$  corrs were used for  $\phi_{_{\!X,y}}$  adjustments for beam-beam

→ LHC corrections (see S. Fartoukh, optics challenges tomorrow)

<sup>†</sup>RHIC Design report

# My 2 Cents

Motivation of chromatic corrections

Looks good on paper for RHIC, but effect on JL.dt ? Some years before it may become a problem for the LHC

Measurements

Few measurements in both machines show good agreement Precise model at each dp/p is nominal procedure now

Correction

RHIC will likely require a dedicated/careful effort Elaborate effort already in place for LHC (S. Fartoukh et al.)

A1: BPM Failure (Only Tune Filtering)



#### A2: AU-2011, CONDITIONS LESS IDEAL







No change in v-BTF after several units of v-chromaticity change

#### A3: Orbit Noise and 10 Hz, RHIC



Average orbit noise at  $50\mu m$  peak to peak (10 Hz)

#### A4: Chromatic Func, Wx,y

Reduction fairly effective with  $\gamma T$  quads

 $\beta^{*} \; 0.71/0.32 \rightarrow 0.78/0.73$ Proton Parameters Chrom Amp Func, W<sub>X</sub> 2.8 IP6 IP& በአማብር ][]ʃʃ͡// 2.4 ՈՈՆՆ ռՈՈՆ 2 "Brute force matching" 1.6 մՄՄՄՆ አማርሳ , 1.2 กระงาไไ 0.8 VUUUV վութ Nominal, 70cm 0.4 QGT [5-8] 0 0.5 1.5 2 2.5 3.5 3 0 2.8 Chrom Amp Func, W<sub>Y</sub> որնեն ՆՂՂՂՂՂՂ 2.4 ՆԱԱՆՆ JUL DU 2 ነቡቡያን 1.6 յիլի Nominal QGT [5-8] 1.2 0.5 1.5 2.5 3.5 2 З

Longitudinal Position [km]

 $\beta \texttt{*} \ 0.71/0.73 \rightarrow 0.78/0.73$ 

![](_page_24_Figure_2.jpeg)

A6: GAMMA-T Quads Settings

 $eta^* \ 0.71/0.73 
ightarrow 0.78/0.73$  $\xi^{"} \ 1274 
ightarrow -471$ 

#### Protons, 2009

| Name                      | kl <sub>init</sub>     | $kI_{final} 	imes 10^{-3}$ | $kI_{final} 	imes 10^{-3}$ |
|---------------------------|------------------------|----------------------------|----------------------------|
| BO[6-7]_QGT[6-8, 12-18]   |                        | -7.10                      | -7.31                      |
| BI[8,9]_QGT[5-7, 11-17]   | 7.5 × 10 <sup>-5</sup> | 3.16                       | -0.21                      |
| BO[10,11]_QGT[6-8, 12-18] |                        | 0.07                       | 18.0                       |
| BI[12,1]_QGT[5-7, 11-17]  |                        | 3.47                       | -10.3                      |
| BO[2,3]_QGT[6-8, 12-18]   |                        | 1.80                       | 3.82                       |
| BI[4,5]_QGT[5-7, 12-18]   |                        | 3.48                       | 5.81                       |
|                           | ·                      | 1                          |                            |

Maybe <u>not enough</u> strength in GammaT quads (max kL  $\sim 2 \times 10^{-3} \text{ m}^{-1}$ )

\* Use tune feedback to avoid running into resonances

 $\beta \texttt{*} \ 0.71/0.73 \rightarrow 0.80/0.72$ 

#### Au 2011

| Name                      | kl <sub>init</sub>     | $kl_{final} \ge 10^{-3}$ | $kl_{final} \ge 10^{-3}$ |
|---------------------------|------------------------|--------------------------|--------------------------|
| BO[6-7]_QGT[6-8, 12-18]   |                        | -1.69                    | -                        |
| BI[8,9]_QGT[5-7, 11-17]   |                        | 1.90                     | _                        |
| BO[10,11]_QGT[6-8, 12-18] | 0 3 × 10 <sup>-5</sup> | 3.74                     | _                        |
| BI[12,1]_QGT[5-7, 11-17]  | 9.5 × 10               | 2.90                     | _                        |
| BO[2,3]_QGT[6-8, 12-18]   |                        | 2.41                     | _                        |
| BI[4,5]_QGT[5-7, 12-18]   |                        | 2.18                     | _                        |