Optics measurments of TOTEM 7 sigma runs (β^* =3.5m) on 30/10/2010

Hubert Niewiadomski

Optics Measurements, Corrections and Modelling for High-Performance Storage Rings workshop (OMCM) CERN, 20-23.06.2011

TOTEM Roman Pots in the LHC

TOTEM Roman Pots

- 4 stations @ s≈±147 and s≈±220m
 - 6 Roman Pots per station
 (4 vertical + 2 horizontal)
- A total of 24 Roman Pots

Roman Pot station outlook

- High spatial resolution of track reconstruction
 - σ(x)=σ(y)≈13μm
 - $\sigma(\theta_x) = \sigma(\theta_y) \approx 3.7 \mu rad$

(s=~147m from IP5)

Precise detector alignment

Track based alignment: ~5μm

Beam touching alignment: ~20μm

- Elastically scattered protons:
 - Can be easily tagged
 - Pair of collinear protons: $\Theta_{left}^* = \Theta_{right}^*$ (within beam divergence)
 - No momentum loss: $\xi = \Delta p / p = 0$ (within beam momentum spread)
 - Dispersion and tune change eliminated

• β^{*}=3.5m optics:

- Beam size @ IP5: 59µm, its impact eliminated by antisymmetric event topology
- @ s=220m : L_x ≈0, L_y ≈20m

Proton tracks of a single diagonal (left-right coincidences)

Elastic proton reconstruction

• Elastic proton reconstruction:

$$\operatorname{Per \ arm:} \begin{cases} \Theta_{x, \operatorname{arm}}^{*} = \Theta_{x, \operatorname{arm}, \operatorname{RP220}} / \frac{dL_{x, \operatorname{arm}}}{ds} & \operatorname{Arms} \\ \Theta_{y, \operatorname{arm}}^{*} = (\Theta_{x, 45}^{*} + \Theta_{x, 56}^{*}) / 2 \\ \Theta_{y, 45}^{*} = (\Theta_{y, 45}^{*} + \Theta_{y, 56}^{*}) / 2 \\ \Theta_{y, \operatorname{arm}}^{*} = y_{\operatorname{arm}, \operatorname{RP220}} / L_{y, \operatorname{arm}} & \operatorname{Finally:} \quad t = -p^{2} (\Theta_{x}^{*2} + \Theta_{y}^{*2}) \end{cases}$$

- Precise values of dL_x/ds and L_v @ RP locations needed!
 - enough to have the values, sources of errors of less importance for TOTEM
 - β -measurement based estimations give the error of 5–10%
- Can we measure them with the proton tracks?
- What are the sources of optics imperfections in the range of interest?

Optics perturbation in IP5

k change by 0.1% (expected limit for the TF error)

Perturbed magnets BEAM 1	BETX	BETY	MUX	Μυγ	v _x	vy	L _x	Ly	dL _x /ds	dL _y /ds	s : L _x =0	∆s : L _x =0 [m]
Nom. MADX solution (TIMBER Oct 30 2010)	33.7m	208m	0.502 ·2π	0.344 .2π	3.10	4.28	-0.132m	22.4m	-0.321	0.086	220m	
MQXA.1R5	0.29%	1.24%	0.31%	-0.25%	0.13%	-0.20%	79.59%	0.98%	-0.46%	3.20%	-0.15%	-0.331
MQXB.A2R5	-0.14%	-2.83%	-0.25%	0.57%	-0.07%	0.37%	-64.86%	-2.24%	0.33%	-7.46%	0.12%	0.268
MQXB.B2R5	-0.13%	-3.08%	-0.37%	0.60%	-0.06%	0.36%	-96.49%	-2.42%	0.45%	-8.13%	0.18%	0.398
MQXA.3R5	0.33%	1.91%	1.00%	-0.34%	0.08%	-0.18%	259.35%	1.45%	-1.14%	4.95%	-0.49%	-1,086
MQY.4R5.B1	0.07%	-0.17%	-0.01%	0.01%	0.03%	-0.05%	-3.83%	-0.10%	-0.02%	-0.64%	0.01%	0.016
MQML.5R5.B1	-0.12%	0.09%	0.01%	0.00%	-0.06%	0.04%	2.80%	0.05%	0.05%	0.54%	-0.01%	-0.011

• Only inner triplet really important

٠

MQY, MQML not really important

t-reconstruction

Roman Pot measurments can be used for optics matching

Optics determination

Measurements with Roman Pots:

Strategy:

- 1. Magnet settings from TIMBER/LSA
- 2. MADX (PTC Twiss) optics model
- 3. Insertion of the Roman Pots and data taking
- 4. Elastically scattered protons selection
- 5. Determination of optics constraints with RP proton tracks
- 6. Matching of the optics (determination of the transport matrix)

(dL_x/ds₄₅)/ (dL_x/ds₅₆) and L_{y,45}/L_{y,56} determination beam 1 & 2 together

Constraints for triplet strenghts matching

$(dL_y/ds)/L_y$ and coupling determination

beam 1 & beam 2 separately

 $(dLy/ds) / Ly near = 3.92 \cdot 10^{-3} m^{-1}$ Nominally: 2.7 \cdot 10^{-3} m^{-1}

Constraint for triplet strenghts matching

 $y_{56} = L_{y,56} \Theta_{y,56}^* + v_y y_{56}^*$

re14/Ly far=36 mrad Nominally: 0

Constraint for triplet rotation matching

s: L_x(s)=0 determination

beam 1 & beam 2 separately

Matched parameters

- Influence of all magnet parameters in ±220m range analysed...
 - ~30 parameters per beam
 - Magnet positions, rotations, k
 - Beam momentum, displacement, crossing angle, harmonics...

- Most significant parameters selected for matching
 - 6 strengths per beam (MQXA, MQXB, MQXB, MQXA, MQY, MQML)
 - 6 corresponding rotations about the beam
 - Mean $\Delta p/p$ per beam
 - Total of 26 fitted parameters

Constraints

- Measured elastic scattering kinematics constraints between arms (a total of 2):
 - Ratio of Ly56 / Ly45 (0.5 % precision)
 - Ratio of (dLx/ds 56) / (dLx/ds 45) (0.5 % precision)
- Measured constraints of individual arms (a total of 8):
 - (dLy/ds)/Ly (0.5%)
 - near unit coupling, far unit coupling (3%)
 - s: Lx=0 (1 m)
- LHC design constraints (a total of 26):
 - sigma(k)/k = 0.1%
 - sigma (rot) = 1mrad
 - Sigma(ξ)/ ξ = 10⁻³

TOTAL of 36 constraints

Matching solution

Full 4x4 transport matrix IP5→RP220 obtained per beam

Beam 1	<u>dL_v/ds</u>	<u>L, [m]</u>	rot [mrad]
RP215	-0.311962	22.15	0.0432
RP220	-0.311962	22.62	0.0396
∆ RP215	-2.84%	+0.78%	
∆ RP220	-2.84%	+0.81%	
<u>Beam 2</u>	<u>dL_x/ds</u>	<u>L, [m]</u>	rot [mrad]
RP215	-0.314508	20.3883272	0.0400268
RP220	-0.314508	20.6709463	0.0372828
∆ RP215	-4.51%	+10.19%	
∆ RP220	-4.51% ₁	+10.79%	
33 32 31 30 29 28 27 26 25 24 23	35 36 2 1.5 0.5 0 0 22 21 20 19	2 3 4 5 6 7 6 7 7 7 6	7 8 9 10 All constraints 11 12 13 4
Aho	s(Pulls) of	^c onstraint	rs

Strong correlations between fitted parameters

PCA should ideally be applied

 χ^2 /NDF = 25.8/(36-26)=2.6 (would be lower in correlations are elmininated)

Complete solution

Beam 1

	BETX	BETY	MUX	MUY
nominal	3.37E+01	2.08E+02	5.13E-01	3.43E-01
obtained	3.41E+01	2.10E+02	5.02E-01	3.44E-01
difference	0.96%	1.07%	2.24%	-0.20%

Beam 2

	BETX	BETY	MUX	MUY
nominal	3.40E+01	1.60E+02	4.90E-01	3.58E-01
obtained	3.39E+01	1.81E+02	5.08E-01	3.47E-01
difference	-0.41%	11.93%	3.51%	-3.04%

Obtained transport matrix

-3.12E+00	-5.39E-01	2.42E-02	6.87E-01
3.33E-02	-3.15E-01	-2.33E-04	-8.42E-03
1.32E-02	1.07E+00	-4.16E+00	2.07E+01
2.05E-04	1.33E-02	-5.90E-02	5.26E-02

$\left(\begin{array}{c} x \\ \Theta_{x}^{*} \\ \vdots \\ \varphi_{x}^{*} \\ \vdots \\ \mathcal{Y}_{x}^{*} \\ \Theta_{y}^{*} \end{array}\right)$

Obtained changes

			1
0.38%	226.67%	85.69%	100.11%
0.70%	-4.51%	84.17%	104.35%
135.55%	98.09%	-1.44%	10.79%
132.41%	99.80%	-1.23%	54.60%

Error estimation

• All the measurements provoke magnet corrections in the same direction

- Observed optics imperfections in x and y per beam provoke identical needs for strengths corrections
- Independent corrections of beam 1 and beam 2 lead to the observed ratios of (dL_x/ds₄₅)/ (dL_x/ds₅₆) and L_{y,45}/L_{y,56}
- Which part of the triplet is precisely responsible? Difficult to say
 - main source of systematic error of corrected optics

- Optics error estimation
 - Required corrections of up to 10% of the nominal optics values of Ly and dLx/ds
 - Values of corrections of Ly and dL_x/ds change by up to 10% depending on the quadrupole of the triplet to which the error is attributed
 - The error of the optics estimation is therefore $\sim 10\% \cdot 10\% = 1\%$

MC error verification

(in progress)

Verification procedure

- 1) Randomly perturbate the initial optics within magnet tolerances
- 2) Measure optics parameters with RPs
- 3) Match the optics
- 4) Compare matched optics to the initial perturbated conditions

Obtained errors:

$$\sigma \left(\Delta \frac{dL_x}{ds} / \frac{dL_x}{ds} \right) = 0.4\%$$

$$\sigma \left(\Delta L_y / L_y \right) = 0.2\%$$

After matching, reconstructed protons

Arms and diagonals in perfect agreement

Final result: unfolded el. scat. distribution

Further steps

- Analysis of the results on the basis of different 2010 runs at different RP distances from the beam
- Analysis of the dispersion for inelastic proton reconstruction
- Analysis of optics for/from future 2011 TOTEM runs (β^* =1.5m, 90m)

We would like to thank you for all your help

Massimo Giovannozzi, Helmut Burkhardt, Ralph Assmann, Rogelio Garcia, Ezio Todesco, Marek Strzelczyk, Gabriel Mueller, Frank Schmidt, Carmen Alabau Pons, ...

Thank you!

BACKUP

Beam based alignment of RPs @220m and data taking (T1,T2,RP220m) (18 May 2011)

Scraping exercise: RP220 approached the low intensity beam in 10 μm steps RP220 now ready for routine insertions in 2011

Data taking with RPs @ 220 close to the beams

- vertical RPs @ $5\sigma = 2.2 \text{ mm}$
- horizontal RPs @ $7\sigma = 1 \text{ mm}$
- low pile-up

Alignment of RP147 planned in August

ELASTIC pp SCATTERING t-range: 0.36 – 3 GeV²

Elastic pp scattering

- Several runs were taken during 2010 with different distances of the Roman pots to the beam center
- \bullet The 7 σ runs were analyzed
- The 18 σ runs with a total luminosity of ~5.8 pb^-1 will follow

Proton reconstruction

• Both angle projections reconstructed: Θ_x^* and Θ_y^*

- Θ_x^* from $\Theta_x @$ RP220 (through dL_x/ds) $\Theta_x = dL_x/ds \Theta_x^*$
- Θ_{y}^{*} from y @ RP220 (through L_y)

Excellent optics understanding

- Magnet currents measured
- Measurements of optics parameters with elastic scatt.

 $y = L_v \Theta_v^*$

- $\Theta_{\text{left}}^* = \Theta_{\text{right}}^*$ (proton pair collinearity)
- Proton position \leftrightarrow angle correlations
- L_x=0 determination, coupling corrections

→ Fine alignment

- Alignment between pots with overlapping tracks ($\sim 1 \mu m$)
- Alignment with respect to the beam scraping exercise (~20µm)
- Mechanical constraints between top and bottom pots (~10 μ m)

Track based alignment

Cuts and data reduction

- Topology
 - near and far units
 - diagonals
- Low $|\xi|$ selection (3 σ)
 - $|x_{RP,45}| < 3\sigma_x @ L_{x,45} = 0$
 - $|x_{RP,56}| < 3\sigma_x @ L_{x,56} = 0$
 - corr. $y_{RP216,45} \leftrightarrow y_{RP220,45}$
 - corr. $y_{RP216,56} \leftrightarrow y_{RP220,56}$
- Elastic collinearity (3σ)
 - $\theta_{x,45}^{*} \leftrightarrow \theta_{x,56}^{*}$ $\theta_{y,45}^{*} \leftrightarrow \theta_{y,56}^{*}$

Total triggers	5.28M	showers
Reconstructed tracks & elastic topology	293k	
Low ξ selection	70.2k	
Collinearity cuts	66.0k	_

Diagonals analysed independently

Intergrated luminosity : 6.2 nbarn⁻¹

Proton tracks of a single diagonal (left-right coincidences)

Cuts and data reduction

- Topology
 - near and far units
 - diagonals
- Low $|\xi|$ selection (3 σ)
 - $|x_{RP,45}| < 3\sigma_x @ L_{x,45} = 0$
 - $|x_{RP,56}| < 3\sigma_x @ L_{x,56} = 0$
 - corr. $y_{RP216,45} \leftrightarrow y_{RP220,45}$
 - corr. $y_{RP216,56} \leftrightarrow y_{RP220,56}$
- Elastic collinearity (3σ)
 - $\begin{array}{ccc} & \theta_{x,45}^{}^{*} \leftrightarrow \theta_{x,56}^{}^{*} \\ & \theta_{y,45}^{}^{*} \leftrightarrow \theta_{y,56}^{}^{*} \end{array}$

Total triggers	5.28M	showers
Reconstructed tracks & elastic topology	293k	
Low ξ selection	70.2k	
Collinearity cuts	66.0k	

Intergrated luminosity : 6.2 nbarn⁻¹

Low $\xi = \Delta p/p$ cuts

Cuts and data reduction

- Topology
 - near and far units
 - diagonals
- Low $|\xi|$ selection (3 σ)
 - $|x_{RP,45}| < 3\sigma_x @ L_{x,45} = 0$
 - $|x_{RP,56}| < 3\sigma_x @ L_{x,56} = 0$
 - corr. $y_{RP216,45} \leftrightarrow y_{RP220,45}$
 - corr. $y_{RP216,56} \leftrightarrow y_{RP220,56}$
- Elastic collinearity (3σ)
 - $\begin{array}{ccc} & \theta_{x,45}^{}^{*} \leftrightarrow \theta_{x,56}^{}^{*} \\ & \theta_{y,45}^{}^{*} \leftrightarrow \theta_{y,56}^{}^{*} \end{array}$

Total triggers	5.28M	showers
Reconstructed tracks & elastic topology	293k	
Low ξ selection	70.2k	
Collinearity cuts	66.0k	

Intergrated luminosity : 6.2 nbarn⁻¹

Elastic collinearity cuts

Data outside the 3 σ cuts used for background estimation

Background and resolution determination

|t|=0.4GeV²: B/S = (11±2)% |t|=0.5GeV²: B/S = (19±3)% |t|=1.5GeV²: B/S = (0.8±0.3)%

t_v-acceptance corrections

ϕ -acceptance correction

Final unfolded distribution

