#### Colliders challenges - optics



R. Tomas

Thanks to M. Bai, M. Biagini, R. Calaga, M. Giovannozzi, Y. Luo, R. Miyamoto, T. Pieloni, S. Redaelli, S. Fartoukh, G. Vanbavinckhove and F. Zimmermann

#### Contents

- Some colliders (so far)
- KEKB and the next luminosity record
- SuperB
- LHC, Roman pots and collimation tolerances
- HL-LHC
- Beam-beam compensation schemes
- Optics measurement and correction techniques

### Some colliders (in the tune world)



Q

## Gold medal for KEKB

- Closest operation to half integer tunes
- Crab cavities for 20% lumi increase



 Measurement and correction of chromatic coupling for another 20% of lumi increase



## Who will break KEKB lumi record?

- 2014: from simple scaling LHC at 7 TeV might achieve 2-3 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> (chance for LHC to become the only hadron collider to beat lepton colliders in the last 20 years)
- 2015: SuperKEKB aims at 8  $10^{35}$  cm<sup>-2</sup>s<sup>-1</sup>
- 2017: SuperB aims at  $10^{36}$  cm<sup>-2</sup>s<sup>-1</sup>
- 2020: HL-LHC goal  $\leq 10^{35} \text{ cm}^{-2} \text{s}^{-1}$

## Exciting luminosity race!

## SuperB challenges (M. Biagini)

- Ultra-low emittance lattice
- FFS closer to linear colliders
- Crab waist



- Beta-beating 3-5% (see LET talk by Simone Liuzzo)
- "... a perfect correction of the crab waist sexts is preferable to avoid a reduction of DA"



Separate H-V chromaticity correction sections in phase with IP, where the  $\beta$  reach maxima. Works very well in terms of DA and off-momentum twiss parameters.

#### **Requirements from LHC Roman pots**



Knowledge of beta-functions better than 1%! See talk by Hubert Niewiadomski

## What was achieved during the 90m LHC Machine Development?



20min of K-modulation gave resolution in beta\* between 2% and 9%

Paths to improve resolution: -Increase modulation depth -Longer measurement time -Improve tune resolution -Combine with AC dipole meas

#### The required <1% seems challenging

## LHC collimation tolerances

| <b>*</b>                 | •                         |                           | ~                              |
|--------------------------|---------------------------|---------------------------|--------------------------------|
| Parameter                | Tolerances                |                           |                                |
|                          | Nominal injection         | Collision (nominal)       | Collision (relaxed $\beta^*$ ) |
| $(n_1/n_2)$              | (6/7 <i>σ</i> )           | (6/7 σ)                   | $(7/10.5 \sigma)$              |
| Beam size at collimators | $\approx$ 1.2 mm          | $\approx 0.2 \text{ mm}$  | pprox 0.2  mm                  |
| Orbit change             | 0.6 σ                     | 0.6 σ                     | 2.0 σ                          |
|                          | $pprox 0.7 \ \mathrm{mm}$ | $\approx 0.12 \text{ mm}$ | $pprox 0.4 \ \mathrm{mm}$      |
| Transient beta beat      | 8%                        | 8%                        | 80%                            |
| Collinearity beam-jaw    | 50 $\mu$ rad              | 50 $\mu$ rad              | 75 $\mu$ rad                   |

Currently at 3.5 TeV relaxed settings are used n1/n2=5.7/8.5  $\sigma$ , But are we ready for nominal settings (trans beta-beat ~ 8%)?

#### 10% variation after a 30 hours fill



10% difference of beta-beating in the beginning and the end of a 30 hours fill (measured in different days)  $\rightarrow$  but 8% tolerance



 $\beta_{*}(m), \beta_{*}(m) [*I0^{**}(3)]$ 

## HL-LHC tolerances (Stephane)

- Required triplet field quality below the traditional 10<sup>-4</sup>, to a fraction of a unit for the low orders.
- Magnetic field measurements not accurate enough →
- Need precise beam-based optics measurements and corrections
- Combined with appropriate corrections circuits

## Crab cavities for the HL-LHC (Rama Calaga)







spoke-cell













In principle 2 per IP, tolerances?

#### Beam-beam resonance suppression





e-lenses can provide the same force as the beam-beam Interaction. Tried in Tevatron, to be tried in RHIC.

#### RHIC e-lens tolerance (Y. Luo)

Dynamic Aperture [o]



Phase advance error tolerance ~ 18°

## Wire for long-range compensation



A wire magnetic field can be used to locally cancel the unwanted long-range interactions. This has been tested in SPS, RHIC and DAFNE.

## Tolerance for a single wire in LHC (F. Zimmermann)



 $10^{\circ}$  error seems OK but the lower the better (~ $1^{\circ}$ )

### Popular measurement techniques

- K-modulation
- Betatron oscillations, free or forced (since ISR)
- Closed Orbit Distortion (KEKB)
- LOCO? (very successful in light sources)

# Is the collider optics challenge to reach light source performance?

- DIAMOND and SOLEIL achieved ~1% betabeating
- DIAMOND measured and corrected varios sextupolar resonances increasing lifetime by 10%
- Differences: number of magnets, BPM resolution, singly powered magnets, etc

## **RHIC** high order correction



Direct optimization of lifetime using 12- and 10-poles IR magnets increased fill integrated luminosity by 4%

## Summary and outlook

- Colliders are incorporating a variety of new devices and detectors: crab cavities, crab waist sextpoles, wires, e-lenses, Roman pots,
- plus pushed IR designs,
- yielding unprecedented tolerances in magnetic errors and optics control
- Can colliders achieve 1% beta-beat and 0.3° phase-beat? (including dynamic effects)
- Are techniques, magnets and instrumentation good enough?

## A possible output of the workshop

| Collider | Initial β-beat | Final β-beat | Technique               |
|----------|----------------|--------------|-------------------------|
| ISR      |                | 15%          | K-modulation            |
| PEP II   | 100%           | 30%          | MIA, resonant excit.    |
| LEP      | 40%            | 14%          | K-mod, multiturn        |
| HERA     | 30%            | 20%          | Orbit response          |
| KEKB     | 80%            | 20%          | Closed orbit distortion |
| DAFNE    |                | 5%           |                         |
| Tevatron |                | 15%          | LOCO, multiturn         |
| RHIC     | 40%            | 20%          | AC dipole, SBST         |
| LHC      | 60%            | 10%          | AC dipole, SBST         |