OpticsCorrection

RHIC Experience:

Optics Measurements, Corrections, and Modeling

M. Bai C-A Dept., BNL

Outline

- RHIC Optics Design
 - Offline linear model design
 - Online implementation
- RHIC optics measurements status
- RHIC optics correction status
 - ORM approach
 - AC dipole measurement based
 - Summary of commissioning of SBST
- Future plans

RHIC Optics Design

- Build linear model to fulfill desired optics functions for the entire ramp with the constraints/inputs of
 - Magnet transfer functions
 - RHIC power supply/shunt currents limit
 - RHIC magnets' wire-up scheme
 - Smooth changes of currents as function of beam energy
- This is done by MAD

Flowchart of RHIC optics design

- Set the Power-supply/Shunt currents to get desired optics
 - Use an Optimizer to find the currents
 - Desired optics functions are the constraints
- Changing optics with beam (squeeze)
 - Requires smooth changes to the currents
- Weakest point: Magnet transfer functions Courtesy of S. Tepikian, BNL

RHIC Optics Design

- Build linear model to fulfill desired optics functions for the entire ramp
 - Output: magnet strength as function of beta*
- Handover the designed magnet strength as function of beta* to OptiCalc, RHIC online model
- OptiCalc then re-generates beta functions for the entire ramp for machine operation.
 - Mode details on RHIC online model are discussed by G.
 Robert-Demolaize tomorrow

"You complete me!" OpticsCorrection

RHIC Optics Measurement Techniques OpticsCorrection

technique	Full ring	Beta*	Online data analysis	Request on beam conditions
AC dipole based	Yes	Yes	Yes	Minimize tune spread
Modulating triplet quadrupole	No	Yes	No	Minimize coupling
Orbit Response Matrix	Yes	Yes	No	N/A
Tune-meter based	Yes	Yes	No	Minimize tune spread

Status of RHIC Optics Measurement OpticsCorrection

• Routine full ring beta/phase beat measurement using ac dipole

Status of RHIC Optics Measurement OpticsCorrection

- Routine full ring beta/phase beat measurement using ac dipole for each operational lattice
- Routine ORM measurement
- Routine beta* measurement
 - using ac dipole
 - Modulating triplet quadrupoles
 - ORM

Method	β*(bh) [m]	β*(bv) [m]	β*(yh) [m]	β*(yv) [m]
mad	22.18	21.41	22.05	20.74
OptiCalc	22.24	20.25	21.88	19.25
quad tweak	19.3(1.4)	24.0(3.2)	21.0(2.2)	17.4(0.7)
AC dipole	22.75	21.00	21.82	19.77

Status of RHIC Optics Corrections

- Focused on commissioning LOCO at RHIC before RUN10
 - Initiated by T. Satogata ~ 6 years ago
 - limited quadrupoles to avoid degeneracy problem
 - Lumped triplet quads, Q4,Q6,Q8. Dual bpms are available at these quadrupoles
 - The data analysis shows the fits should be available to correct 15~20% beta-beat
 - Application of ORM analysis to actual machine was a mixed results
 - BPM data quality

Status of RHIC Optics Corrections OpticsCorrection

- Introduced SBST technique in RUN11 of pp
 - Glenn built similar SBST package for RHIC
 - scripts to adapt RHIC madx model, which only contains the design value of all magnets.
 - scripts to accommodate separate plane bpms
 - Compared the optics measurement results of using SUSSIX and using current RHIC online optics measurement application
 - Had ~ 8 hours of beam time during pp run to commission the technique in the Blue ring

Summary of SBST Commissioning OpticsCorrection

• Initial IP6 correction helped to reduce the vertical beta-beat except sector 12-1 and sector 2&3

Effect of IP6 Correction

Effect of IP6 Correction

Summary of SBST Commissioning OpticsCorrection

- Initial IP6 correction helped to reduce the vertical beta-beat except sector 12-1 and sector 2&3
- IP8 correction wasn't effective in vertical. And it showed mixed effects on the horizontal beta-beat

Effect of IP8 Correction

Effect of IP8 Correction

OpticsCorrection

 $\Delta\, \varphi_{\mathsf{X}}$

Summary of SBST Commissioning OpticsCorrection

- Initial IP6 correction helped to reduce the vertical beta-beat except sector 12-1 and sector 2&3
- IP8 correction wasn't effective in vertical. And it showed mixed effects on the horizontal beta-beat
- Together with IP6 correction, IP12 correction shows moderate effect on horizontal beta-beat at the expense of vertical betabeat. This solution also affected beta* at IP6 and IP8

Baseline, IP6, IP12+IP6

Summary of SBST Commissioning OpticsCorrection

- Initial IP6 correction helped to reduce the vertical beta-beat except sector 12-1 and sector 2&3
- IP8 correction wasn't effective in vertical. And it showed mixed effects on the horizontal beta-beat
- Together with IP6 correction, IP12 correction shows moderate effect on horizontal beta-beat at the expense of vertical betabeat. This solution also affected beta* at IP6 and IP8
- Together with reduced IP6 correction, IP4 correction shows moderate effect on vertical beta-beat except sector 6&7. No significant effect on horizontal beta-beat

Encountered Issues

OpticsCorrection

- Limited knobs
 - RHIC nesting power supply scheme

♦ □ ▲ 6600 2000 130

Encountered Issues

- Limited knobs
 - RHIC nesting power supply scheme
 - limited independent knobs: trim quads at Q5, Q6
 - Power supply limit
- Reproducibility of optics

Reproducibility?

Encountered Issues

- Issues
 - Limited knobs
 - Reproducibility of optics
 - Complicated RHIC modeling infrastructure
 - Two model engines for RHIC: mad and online model(Opticalc)
 - They don't carry exact the same lattice, for instance, the crossing angles, local coupling corrections, etc.
 - Each model uses slightly different magnet transfer function
 - For mad, it assumes the same transfer function for the same type of magnets
 - For online model, the actual measured transfer function for each magnet is used

Future Plan

- Systematically analyze the results from RUN11 to understand each IP's knob effect
- Integrate Glenn's SBST package with RHIC current
 online optics measurement application
 - Loptics was built based on ac dipole. It uses the turn by turn fitting to calculate the phase advances as well as beta functions
 - It is also based on RHIC online model
 - Implement the power-supply limit in the application
 - Include coupling as well as dispersion
- Commission the global optics correction (SVD)
 - Proof-of-principle in 2009 run

Beam not centered in Quads

SBST Analysis IP2, Fill 15161

