

D. Einfeld, ALBA-CELLS, OMCM - Workshop CERN, 20th - 22nd June 2011

ACCELERATICUM, AT, BETA, BMAD, COMFORT, COSY-INFINITY, DIMAD, ELEGANT, LEGO, LIAR, LUCRETIA, MAD, MARYLIE, MERLIN, ORBIT, OPA, PETROS, PLACET, PTC, RACETRACK, SAD, SIXTRACK, SYNCH, TEAPOT, TRACY, TRANSPORT, TURTLE, UAL

- History of the code comparison
- Lattices and codes to compare
- Linear parameters
- Tune shifts with energy
- Tunes shifts with amplitude
- Dynamic Apertures
- Conclusion
- Appendix

Single Particle Beam Dynamics Codes

Winni Decking DESY – MPY

HHH Workshop CERN 2004

This is an excellent overview of the different lattice codes

- The physicist who cares only about the methods/assumptions used
- The programmer who wants to implement the newest programming techniques
- The user (also a physicist/programmer) who doesn't care about methods and programming but likes a well documented, usable, cross-checked code to get the work done

The user of the codes belongs to the third category and will concentrate on this aspect

A legacy of beam dynamics codes

- Many beam dynamics codes written over the years
- Here is a surely not complete list:

ACCELERATICUM AT BETA BMAD, COMFORT, COSY-INFINITY, DIMAD ELEGANT LEGO, LIAR, LUCRETIA, MAD, MARYLIE, MERLIN, ORBIT, OPA, PETROS, PLACET, PTC, RACETRACK, SAD, SIXTRACK, SYNCH, TEAPOT, TRACY, TRANSPORT, TURTLE, UAL

History of Code Comparison

Accelerator Division

23rd Particle Accelerator Conference 4-8 May, 2009 Vancouver, British Columbia, Canada

Meeting at the PAC 2009 to discuss the code comparison again (initiated by Riccardo Bartolini, Diamond)

MAD (Zeus Marti, CELLS) DIMAD (Les Dallin, CLS) BETA (Laurent Nadolski, SOLEIL) OPA (Andreas Streun, SLS) AT (Xiabiao Huang, SPEARE III) TRACY (Laurent Nadolski) ELEGANT (Mike Borland and Louis Emery, APS) ACCELERATICUM (Pavel Piminov, BINP)

The following lattices have been chosen:

SOLEIL: High field in the bendings (1.72 T).

- ALBA: Like SOLEIL but with a gradient in the bendings (5.6 T/m)
- APS: High energy machine (8 GeV)

Procedure

Accelerator Division

The results were calculated by the different colleagues. The summary and comparison has been done by D. Einfeld The results were presented and discussed at the 2nd NLBD Workshop as well at the 16th ESLS-Workshop at DESY

2nd nonlinear beam dynamics workshop Diamond, 02 November 2009

http://www.diamond.ac.uk/Home/Events/Past_events/NBD_workshop.html

https://indico.desy.de/contributinsListDisplay.py?confld=2325

D. Einfeld / ALBA-CELLS

Four fold symmetry with 2 unit cells and 2 matching sections in a quadrant. C = 354,1 m, E = 2.75 GeV, RF= 352MHz, Qx = 18.2 and Qy = 10.3

D. Einfeld / ALBA-CELLS

D. Einfeld / ALBA-CELLS

It is a typical DBA – lattice with 40 cells. C = 1104. m, E = 7.00 GeV, RF= 500MHz, Qx = 36.2 and Qy = 19.27 As "Linear Parameters" we compare: **Beta functions Dispersion functions Tunes Natural chromaticity's Corr. chromaticity's Mom.-Comp.-Factor** Emittance's, **Energy spread** Damping times, Partition numbers, Synchrotron integrals,

		MAD	Tracy II	BETA	ELEG.		АТ		Accel.
Parameter	Unit	•		•	•	•	•		•
Energy	Gev	3	3.000	3	3	3	3	3	3
Circumterence	m	268.8003	268.8003	268.8000	268.8000	268.8000	268.8003	268.8000	268.8003
Horizontal Tune Q(x)		18.1790	18.1789	18.1791	18.1790	18.1790	18.1790	18.1790	18.1790
Vertical Tune (Qy)		8.3720	8.3715	8.3710	8.3379	8.3720	8.3720	8.3720	8.3720
Beta_x (β(x))		11.1986	11.1980	11.1950	11.1967	11.1960	11.1966	11.1970	11.1970
Beta_y (β(y))		5.9288	5.9270	5.9250	5.7711	5.9290	5.9287	5.9290	5.9288
Dispersion_x (η(x))		0.1461	0.1470	0.1462	0.1462	0.1460	0.1461	0.1462	0.1465
HorizNaturChromaticity ξ(x)		-39.4893	-39.4976	-39.4400	-39.4433	-39.4433	-39.4155	-39.6480	-39.6481
VerticNaturChromaticity ξ(y)		-28.0677	-28.1603	-28.7700	-29.4241	-28.7558	-28.7372	-26.8830	-26.8831
Momentum Compaction Factor (α)		8.8230E-04	8.7580E-04	8.8290E-04	8.8293E-04	8.8230E-04	8.8316E-04	8.8300E-04	8.8229E-04
Energy Spread (δΕ/Ε)		1.0489E-03	1.0600E-03	1.0500E-03	1.0515E-03	1.0500E-03	1.0512E-03	1.0490E-03	1.0515E-03
Natural emittance	nm*rad	4.4874	4.4880	4.48922	4.4571	4.4600	4.4545	4.4880	4.4570
HorizDamping-Time (τ(x))	msec	4.0826	4.0830	4.0810	4.0550	4.0551	4.0531	4.0840	4.0550
VertDamping-Time (τ(y))	msec	5.2908	5.2910	5.2880	5.2908	5.2910	5.2887	5.2910	5.2908
LongDamping-Time (τ(s))	msec	3.1048	3.1040	3.1030	3.1210	3.1211	3.1199	3.1050	3.1210
Energy Loss per Turn (U(0))	MeV	1.0168	1.0168	1.0170	1.0168	1.0168	1.0172	1.0167	1.0156
HorizPartition Number (J(x))	A	1.2959	1.2960	1.29576	1.3048	1.3048	1.3048	1.2958	1.3048
VertPartition Number (J(y))		1.0000	1.0000	1.00000	1.0000	1.0000	1.0000	1.0000	1.0000
LongPartition Number (J(s))		1.7041	1.7040	1.70424	1.6952	1.6952	1.6952	1.7042	1.6952
SynchrIntegrat (I1)		0.2375	0.2354	0.2373	0.2373	0.2373	0.2374	0.2373	0.2373
SynchrIntegrat (I2)		0.8916	0.8916	0.8916	0.8916	0.8916	0.8916	0.8916	0.8916
SynchrIntegrat (I3)		0.1265	0.1265	0.1265	0.1265	0.1265	0.1265	0.1265	0.1265
SynchrIntegrat (I4)		-0.2717		-0.2637	-0.2717	-0.2717	-0.2718	-0.2637	-0.2717
SynchrIntegrat (I5)		3.9356E-04		3.9256E-04	3.9258E-04	3.9258E-04	3.9258E-04	3.9250E-04	3.9258E-04

Average Values and Standard Deviations: ALBA

Evaluation for the ALBA -Lattice

		Average	StandDeviat.	Deviation in %	For the lattice
Parameter	Unit				there
Energy	GeV	3	0	0	
Circumference	m	268.800150	0.000160	0.000059	are 8 paramete
Horizontal Tune Q(x)		18.178994	0.000054	0.000297	with red which
Vertical Tune (Qy)		8.367541	0.012000	0.143412	
Beta_x (β(x))	m/rad	11.196861	0.001112	0.009932	they are out of
Beta_y (β(y))	m/rad	5.908420	0.055511	0.939528	agreement (·la
Dispersion_x (η(x))	m	0.146274	0.000330	0.225908	
HorizNaturChromaticity ξ(x)		-39.503124	0.093399	-0.236434	0.3%). The
VerticNaturChromaticity ξ(y)		-28.210149	0.918679	-3.256553	differences are
Momentum Compaction Factor (α)		0.000882	0.000002	0.279503	vortical bota fu
Energy Spread (δΕ/Ε)		0.001051	0.000004	0.341104	vertical beta tu
Natural emittance	nm*rad	4.470287	0.016461	0.368239	(1%) and the v
HorizDamping-Time (τ(x))	msec	4.068592	0.015052	0.369968	Chromaticity (
VertDamping-Time (τ(y))	msec	5.290260	0.001208	0.022833	Chromaticity (
LongDamping-Time (τ(s))	msec	3.112472	0.008860	0.284649	The agreemen
Energy Loss per Turn (U(0))	MeV	1.016717	0.000480	0.047176	horizontal dira
HorizPartition Number (J(x))		1.300974	0.004751	0.365165	nonzontarure
VertPartition Number (J(y))		1.000000	0.000000	0.000008	pretty
LongPartition Number (J(s))		1.699021	0.004756	0.279913	good, but not s
SynchrIntegrat (I1)		0.237116	0.000690	0.290827	good, but not (
SynchrIntegrat (I2)		0.891605	0.000003	0.000371	the vertical dir
SynchrIntegrat (I3)		0.126522	0.000001	0.000661	
SynchrIntegrat (I4)		-0.269445	0.003925	-1.456688	
SynchrIntegrat (I5)		3.9271E-04	3.7685E-07	0.095962	

ALBA, rs marked means good rger as largest for the nction ertical 3.3%). t is in the ction so good in ection

Remarks: "Average" is the average value of all the codes"

Stand.-Deviat." is the standard deviation according to the "Gaussian distribution"

"Deviation in %" is the quotient of the standard deviation divided by the average value.

D. Einfeld / ALBA-CELLS

The corrected chromaticity's and the chromaticity's resulting from the sextupoles are given in the two tables below:

	MAD	Tracy II	BETA	ELEG.	DIMAD	АТ		Acceler.
Horiz. Corr. Chrom.	1.3440	1.3402	1.4200	1.4211	1.4420	1.4197	1.2200	1.2160
Vert. Corr. Chrom	0.5535	0.3992	-0.1110	-0.0065	-0.1133	-0.1129	1.7700	1.7590
Horiz.Chrom. ξ(x) by sextupoles	-38.1453	-38.1574	-38.0200	-38.0221	-38.0013	-37.9957	-38.4280	-38.4321
VerticChrom. ξ(y) by sextupoles	-27.5142	-27.7611	-28.8810	-29.4306	-28.8691	-28.8501	-25.1130	-25.1241

Comments to the corrected Chromaticity's

1.) Horizontal corrected chromaticity:

The agreement between the codes is very well. The deviations are between 1.442 and 1.216 which is 0.226. This for an overall value of 39.5 makes a percentage of 0.6% which means a good agreement. For the calculated chromaticity (linear parameter) there is also a difference between the codes of 0.21 (39.6481-39.4400), which means a percentage 0f 0.5%

2.) Vertical corrected chromaticity:

The agreement between the codes is not so good as for the horizontal direction. The deviations are between 1.77 and -0.1129 which is 1.8829. This for an overall value of -28.2 makes a percentage of 6.7% which is really pretty high and means no good agreement. For the calculated chromaticity (linear parameter) there is also a difference between the codes of 2.541 (29.4241-26.8831), which means a percentage of 9.24 %

The reason of the bad agreement for the vertical corrected chromaticity could be the calculation of the fringe field contribution of the bending magnet. Independent of the fringe field calculation is only the contribution of the sextupoles.

Calculation for the Lattice SOLEIL

		MAD	Tracy II	BETA	ELEG.		AT	OPA	Accel.
Parameter	Unit								
Energy	GeV	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.7
Circumference	m	354.0975	354.0967	354.0960	354.1000	354.1000	354.0967	354.0970	354.09672
Horizontal Tune Q(x)		18.2000	18.1996	18.2000	18.2000	18.2000	18.2000	18.1999	18.1999
Vertical Tune (Qy)		10.3000	10.2998	10.2998	10.2714	10.3000	10.2998	10.2998	10.3742
Beta_x (β(x))		10.8740	10.877	10.8735	10.8740	10.8740	10.8740	10.8740	10.8743
Beta_y (β(y))		7.9970	7.9970	7.9974	7.8838	7.9970	7.9974	7.9970	8.1189
Dispersion_x (η(x))		0.2205	0.2210	0.2205	0.2205	0.2200	0.2205	0.2205	0.2206
HorizNaturChromaticity ξ(x)		-52.9047	-52.8769	-52.9022	-52.9026	-52.9026	-52.9027	-52.9870	-52.9867
VerticNaturChromaticity ξ(y)		-22.4212	22.3640	-22.4442	-22.3046	-22.4450	-22.4450	-21.0050	-21.2814
Momentum Compaction Factor (α)		4.4983E-04	3790E-04	4.4980E-04	4.4983E-04	4.4983E-04	4.4991E-04	4.5000E-04	4.4 <u>984E-0</u> 4
Energy Spread (δ E/E)		1.0166E-03	1.0320E-03	1.0163E-03	1.0182E-03	1.0181E-03	1.0179E-03	1.0160E-03	9.9965E-04
Natural emittance	nm*rad	3.6300	3.5670	3.6284	3.5983	3.5979	3.5975	3.6270	3.5983
HorizDamping-Time (τ(x))	msec	6.9114	7.0030	6.9152	6.8639	6.8642	6.8611	6.9200	6.8639
VertDamping-Time (τ(y))	msec	6.8748	6.9660	6.8787	6.8823	6.8826	6.8795	6.8830	6.8823
LongDamping-Time (τ(s))	msec	3.4283	3.4740	3.4303	3.4458	3.4459	3.4444	3.4320	3.4458
Energy Loss per Turn (U(0))	MeV	0.9515	0.9430	0.9446	0.9439	0.9439	0.9443	0.9438	0.9439
HorizPartition Number (J(x))		0.9946	0.9949	0.9947	1.0027	1.0027	1.0027	0.9947	1.0027
VertPartition Number (J(y))		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
LongPartition Number (J(s))		2.0054	2.0060	2.0053	1.9973	1.9973	1.9973	2.0053	1.9973
SynchrIntegrat (I1)		0.1594	1551	0.1593	0.1593	0.1593	0.1593	0.1593	0.1593
SynchrIntegrat (I2)		1.1722	1.1722	1.1722	1.1722	1.1722	1.1722	1.1722	1.1722
SynchrIntegrat (I3)		0.2187	0.2187	0.2187	0.2187	0.2187	0.2187	0.2187	0.2187
SynchrIntegrat (I4)		-2.661E-03		6.194E-03	-3.144E-03	-3.144E-03	-3.144E-03	6.194E-03	-3.144E-03
SynchrIntegrat (I5)		3.857E-04		3.811E-04	3.811E-04	3.811E-04	3.812E-04	3.811E-04	3.811E-04

Evaluation for the SOLEIL -Lattice

		Average	Stand,-Deviat.	Deviat. in %
Parameter	Unit			
Energy	GeV	2.750000	0.000000	0.000000
Circumference	m	354.097706	0.001629	0.000460
Horizontal Tune Q(x)		18.199959	0.000044	0.000240
Vertical Tune (Qy)		10.306423	0.031709	0.307662
Beta_x (β(x))		10.873972	0.000236	0.002168
Beta_y (β(y))		7.998188	0.062865	0.785988
Dispersion_x (η(x))		0.220498	0.000269	0.122217
HorizNaturChromaticity ξ(x)		-52.923300	0.044476	-0.084038
VerticNaturChromaticity ξ(y)		-22.038026	0.618458	-2.806323
Momentum Compaction Factor (α)		0.000448	0.000004	0.943364
Energy Spread (δΕ/Ε)		0.001017	0.000009	0.856395
Natural emittance	nm*rad	3.605550	0.021690	0.601580
HorizDamping-Time (τ(x))	msec	6.900348	0.048939	0.709222
VertDamping-Time (τ(y))	msec	6.891163	0.030366	0.440652
LongDamping-Time (τ(s))	msec	3.443310	0.014561	0.422887
Energy Loss per Turn (U(0))	MeV	0.944854	0.002724	0.288256
HorizPartition Number (J(x))		0.998708	0.004249	0.425442
VertPartition Number (J(y))		1.000000	0.000000	0.000034
LongPartition Number (J(s))		2.001404	0.004374	0.218538
SynchrIntegrat (I1)		0.158771	0.001500	0.945032
SynchrIntegrat (I2)		1.172240	0.000000	0.000000
SynchrIntegrat (I3)		0.218702	0.000001	0.000384
SynchrIntegrat (I4)		-0.000407	0.004513	-1108.65
SynchrIntegrat (I5)		3.8177E-04	1.7325E-06	0.453807

For the lattice SOLEIL, there are 8 parameters marked with red, which means they are out of Good agreement. The Largest differences are for the vertical beta function (0.8%) and the vertical Chromaticity (2.8%). The agreement is in the horizontal direction pretty good, but not so good in the vertical direction

Remarks: "Average" is the average value of all the codes"

Stand.-Deviat." is the standard deviation according to the "Gaussian distribution"

"Deviation in %" is the quotient of the standard deviation divided by the average value.

The corrected chromaticity's and the chromaticity's resulting from the sextupoles are given in the two tables below:

	MAD	Tracy II	BETA	ELEG.		AT	ΟΡΑ	Accel.
Horiz. Corr. Chrom.	0.0195	0.0471	0.0195	0.0195	0.0193	0.0201	-0.0500	-0.0646
Vert. Corr. Chrom	-0.1046	-0.0237	-0.1046	0.0167	-0.1046	-0.1041	1.3400	1.3440
Horiz.Chrom. ξ(x) by sextupoles	-52.8851	-52.8298	-52.8828	-52.8830	-52.8833	-52.8826	-53.0370	-53.0513
VerticChrom. ξ(y) by sextupoles	-22.5258	-22.3877	-22.5488	-22.2879	-22.5496	-22.5491	-19.6650	-19.9374

Comments to the corrected Chromaticity's

1.) Horizontal corrected chromaticity:

The agreement between the codes is very well. The deviations are between -0.0646 and 0.0471 which is 0.112. This for an overall value of 52.9 makes a percentage of 0.2% which means a good agreement. For the calculated chromaticity (linear parameter) there is also a difference between the codes of 0.0844 (52.987-52.9026), which means a percentage 0f 0.16%

2.) Vertical corrected chromaticity:

The agreement between the codes is not so good as for the horizontal direction. The deviations are between 1.34 and -0.1046 which is 1.4446. This for an overall value of -22.4 makes a percentage of 6.5% which is really pretty high and means no good agreement. For the calculated chromaticity (linear parameter) there is also a difference between the codes of 1.445 (22.4500-21.0050), which means a percentage of 6.6 %

The reason of the bad agreement for the vertical corrected chromaticity could be the calculation of the fringe field contribution of the bending magnet. Independent of the fringe field calculation is only the contribution of the sextupoles.

Lattice of APS

Calculation for the Lattice APS

		MAD	Tracy II	BETA	ELEG.		AT	OPA	Accel.
Parameter	Unit								
Energy	GeV	7.0000	7.0000	7.0000	7.0000	7.0000	7.0000	7.0000	7.0000
Circumference	m	1104.000	1104.000	1104.000	1104.000	1104.000	1104.000	1104.000	1104.000
Horizontal Tune Q(x)		36.2045	36.2043	36.2045	36.2045	36.2050	36.2045	36.2045	36.2045
Vertical Tune (Qy)		19.2658	19.2688	19.2657	19.2658	19.2660	19.2719	19.2658	19.2719
Beta_x (β(x))		19.4874	19.4870	19.4888	19.4874	19.4870	19.4875	19.4870	19.4874
Beta_y (β(y))		2.9251	2.9110	2.9252	2.9251	2.9250	2,9031	2.9250	2.9030
Dispersion_x (η(x))		0.1718	0.1720	0.1719	0.1719	0.1720	0.1719	0.1719	0.1719
HorizNaturChromaticity ξ(x)		-90.3443	-90.3377	-90.3500	-90.3443	-90.3443	-90.3342	-90.3840	-90.3838
VerticNaturChromaticity ξ(y)		-43.1432	-43.0111	-42.8800	-42.8739	-42.8800	-43.1340	-42.5730	-42.8349
Momentum Compaction Factor (α)		2.8420E-04	2.8303E-04	2.8430E-04	2.8435E-04	2.8435E-04	2.8437E-04	2.8400E-04	2.8435E-04
Energy Spread (δE/E)		9.5410E-04	1.0020E-03	9.5380E-04	9.5415E-04	9.5409E-04	9.5391E-04	9.5400E-04	9.5415E-04
Natural emittance	nm*rad	2.5270	2.5346	2.5220	2.5275	2.5272	2.5266	2.5320	2.5275
HorizDamping-Time (τ(x))	msec	9.6530	9.6660	9.6682	9.6533	9.6537	9.6494	9.6710	9.6533
VertDamping-Time (τ(y))	msec	9.6530	9.6580	9.6563	9.6582	9.6586	9.6542	9.6590	9.6582
LongDamping-Time (τ(s))	msec	4.8283	4.8270	4.8252	4.8303	4.8305	4.8283	4.8270	4.8303
Energy Loss per Turn (U(0))	MeV	5.3380	5.3379	5.3390	5.3380	5.3378	5.3402	5.3376	5.3380
HorizPartition Number (J(x))	6	1.0050	0.9996	0.9988	1.0005	1.0005	1.0005	0.9988	1.0005
VertPartition Number (J(y))		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
LongPartition Number (J(s))		2.0000	2.0020	2.0012	1.9995	1.9995	1.9995	2.0012	1.9995
SynchrIntegrat (I1)		0.3139	0.3125	0.3139	0.3139	0.3139	0.3139	0.3139	0.3139
SynchrIntegrat (I2)		0.1579	0.1592	0.1579	0.1579	0.1579	0.1579	0.1579	0.1579
SynchrIntegrat (I3)		3.9970E-03	4.0314E-03	3.9975E-03	3.9975E-03	3.9975E-03	3.9975E-03	3.9975E-03	3.9975E-03
SynchrIntegrat (I4)		-7.8920E-05		1.93814E-04	-7.8915E-05	-7.892E-05	-7.8907E-05	1.94E-04	-7.892E-05
SynchrIntegrat (I5)		5.5530E-06		5.55259E-06	5.5532E-06	5.5532E-06	5.5540E-06	5.5533E-06	+5.5532E-06

BA

Average Value and Standard Deviations: APS

Evaluation for the APS -Lattice

		Average	StandDev.	Deviation in %
Parameter	Unit			
Energy	GeV	7	0	0
Circumference	m	1104	4.085E-12	3.700E-13
Horizontal Tune Q(x)		36.20455	0.00020	0.00054
Vertical Tune (Qy)		19.26771	0.00312	0.01620
Beta_x (β(x))		19.48744	0.00066	0.00340
Beta_y (β(y))		2.91782	0.01137	0.38979
Dispersion_x (η(x))		0.17191	0.00005	0.02710
HorizNaturChromaticity ξ(x)		-90.35281	0.02163	-0.02394
VerticNaturChromaticity ξ(y)		-42.91627	0.17834	-0.41556
Momentum Compaction Factor (α)		2.841E-04	1.41707E-07	0.04988
Energy Spread (δE/E)		9.600E-04	1.4154E-07	0.01474
Natural emittance	nm*rad	2.52805	0.00318	0.12582
HorizDamping-Time (τ(x))	msec	9.65850	0.00903	0.09351
VertDamping-Time (τ(y))	msec	9.65694	0.00181	0.01870
LongDamping-Time (τ(s))	msec	4.82836	0.00217	0.04499
Energy Loss per Turn (U(0))	MeV	5.33832	0.00099	0.01849
HorizPartition Number (J(x))		1.00052	0.00089	0.08921
VertPartition Number (J(y))		1.00000	0.00000	0.00000
LongPartition Number (J(s))		2.00031	0.00089	0.04466
SynchrIntegrat (I1)	- 1.00	0.31374	0.00001	0.00380
SynchrIntegrat (I2)		0.15807	0.00000	0.00011
SynchrIntegrat (I3)		4.0017E-03	0.00000	0.00013
SynchrIntegrat (I4)		-2.4367E-05	0.00014	-559.638
SynchrIntegrat (I5)		5.5533E-06	0.00000	0.00737

For the lattice APS, there are only 3 parameters marked in red.

For SOLEIL there are 13 parameters and for ALBA 8 parameters marked with red.

This means that the agreement of the codes are much better for APS as for ALBA and SOLEIL

Reason: The lattices of ALBA and SOLEIL are more complex as APS

Remarks: "Average" is the average value of all the codes"

Stand.-Deviat." is the standard deviation according to the "Gaussian distribution"

"Deviation in %" is the quotient of the standard deviation divided by the average value.

D. Einfeld / ALBA-CELLS

The corrected chromaticity's and the chromaticity's resulting from the sextupoles are given in the two tables below:

	MAD	Tracy II	BETA	ELEGANT		AT	OPA	Acceler.
Horiz. Corr. Chrom.	6.7043	5.8687	6.7020	6.7043	6.7043	6.7066	6.6500	6.6650
Vert. Corr. Chrom	6.4712	6.8007	6.4670	6.4712	6.4652	6.5346	6.7700	6.8430
Horiz.Chrom. ξ(x) by sextupoles	-83.6400	-84.4690	-83.6480	-83.6400	-83.6400	-83.6276	-83.7340	-83.7188
VerticChrom. ξ(y) by sextupoles	-36.6720	-36.2104	-36.4130	-36.4027	-36.4148	-36.5994	-35.8030	-35.9919

Comments to the corrected Chromaticity's

1.) Horizontal corrected chromaticity:

The agreement between the codes is very well. The deviations are between 5.8687 and 6.7066 which is 0.8379. This for an overall value of 90.3 makes a percentage of 0.93% which means a good agreement. For the calculated chromaticity (linear parameter) there is also a difference between the codes of 0.0496 (90.3838-90.3342), which means a percentage of 0.05%

2.) Vertical corrected chromaticity:

The agreement between the codes is very well. The deviations are between 6.8430 and 6.4712 which is 0.3718. This for an overall value of -42.8 makes a percentage of 0.87% which means a good agreement. For the calculated chromaticity (linear parameter) there is also a difference between the codes of 0.5702 (43.1432-42.573), which means a percentage of 1.33 %

This is completely different as for the lattices ALBA and SOLEIL

Comparison of the Codes for all Lattices Accelerator

Standard deviation in % for the different codes and lattices											
	MAD	Tracy II	BETA	ELEGANT	DIMAD	AT	ΟΡΑ	Accel.			
Lattice ALBA											
∑StandDev.=	0.2239	0.3514	0.4597	1.0785	0.4463	0.4392	1.0355	1.0257			
SUM(STDev.)=	5.0602										
Lattice SOLEII	L										
∑StandDev.=	0.454	1.050	0.446	0.457	0.443	0.444	1.030	0.920			
SUM(STDev.)=	5.2444										
Lattice APS											
∑StandDev.=	0.2137	0.9599	0.1672	0.1490	0.1507	0.2109	0.2319	0.1713			
SUM(STDev.)=	2.2546										

Conclusion:

1.) Lattice ALBA: ELEGANT, OPA and ACCEL. have the largest deviation from the average

2.) Lattice SOLEIL: TRACY, OPA and Acceler. have the largest deviation from the average

3.) Lattice APS: TRACY II has the largest deviation from the average

4.) The deviation are much smaller (by a factor of two) for APS as for ALBA and SOLEIL

D. Einfeld / ALBA-CELLS

Conclusions for linear parameters

- 1.) For the table with the differences in percentages I made the statement that everything which is larger as 0.3 % is not in an agreement.
- 2.) The deviations from the average values are: ALBA up to 5.%(ELEGANT, OPA and ACCELER), for the vert. chromaticity SOLEIL up to 5 %(OPA), for the vert. chromaticity APS up to 4 %(Tracy). For the energy spread
- 3.) The biggest differences are for the vertical chromaticity's
- 4.) The biggest differences are for the lattices ALBA and SOLEIL. They are a factor of two higher as for the lattice APS
- 5.) Most of the deviations are for the code TRACY II
- 6.) DIMAD agrees very well with the average value

For all codes: 1.) Qi = F(DE/E) 2.) Qi = F(amplitude x) 3.) Qi = F(amplitude y) 4.) Dynamic aperture

Tune Shift with Energy for ALBA

Accelerator Division

All the codes overlapping more or less, which means they should agree with each other, but for positive energy deviations the differences between the codes are up to 20% at DE/E = 2.5%, for negative energy deviations the difference goes up to 25 %. This means that the agreement between the codes are not so good. The chromaticity according to these plot is roughly 1.5, which agrees very well with the data of the linear parameters.

D. Einfeld / ALBA-CELLS

Tune Shift with Energy for SOLEIL

Accelerator Division

All the codes overlapping more or less, which means there is a good agreement between the codes. For positive energy deviations the differences between the codes are up to 10% at DE/E = 2.5%, for negative energy deviations the difference goes up to 18 %. The chromaticity according to these plot is roughly 0, which agrees very well with the data of the linear parameters.

D. Einfeld / ALBA-CELLS

Tune Shift with Energies for APS

The horizontal working point of APS is 36.205. The tune increases with positive energy deviations and at DE/E = 2.5 % it is crossing the half integer line. For negative energy deviation the decreases slightly but recovers later too.

There is a really good agreement between the different codes but only BETA is away by roughly 20% at DE/E = 2%. The chromaticity according to these plot is 6.75, which is in good agreement with the calculations.

		MAD	TRACY	BETA	ELEGANT	AT	OPA	ACCEL.	Tolerances
APS:	Qx	+	+	-	+	+	+	+	3%
	Qy	+	+	-	+	+	+	+	10%
SOLEIL:	Qx	+	+	+	+	+	+	+	18%
	Qy	-	+	+	-	+	-	-	+(40%), -(16%)'
				6					
ALBA:	Qx	+	+	+	+	+	+	+	22%
	Qy	+	-	-	+	-	+	+	+(16%), -(70%)'

Explanations to the above table:

1.) The codes with a + (plus) agree relative with each other.

2.) The codes with a - (minus) agree relative with each other

3.) +(40%) means that the codes (+) agree within a tolernce of 40%

4.) -(16%) means that the codes (-) agree within a tolerance of 16%

For the changes of the horizontal tune (Qx) with the energy all codes agree relative with each other with tolerances from 3% (APS) to 22% (ALBA). The agreement for the vertical tune shift (Qy) with energy is pretty bad. The tolerances go from 10% (APS) to 70% (ALBA) The tolerances are much smaller for APS as for SOLEIL and ALBA

D. Einfeld / ALBA-CELLS

OMCM – Workshop, CERN, 20-22 June 2011

Division

Comparison BETA / Tracy

D. Einfeld / ALBA-CELLS

OMCM – Workshop, CERN, 20-22 June 2011

0.02

0.03

0.01

- beta: nux beta: nuz

tracy: nux

tracy: nuz

For all codes:

Qi = F(DE/E)
Qi = F(amplitude x)
Qi = F(amplitude y)
Qi = F(amplitude y)

Tune Shift with horizontal Amplit. for ALBA

Accelerator Division

D. Einfeld / ALBA-CELLS

LBA

Tune Shift with horizontal Amplit. for SOLEIL Accelerator

Tune Shift with horizontal Amplit. for APS

Accelerator Division

D. Einfeld / ALBA-CELLS

BA

Conclusions for Tune-shift with Amplitude

		MAD	AT	TRACY	BETA	OPA	ELEGANT	ACCEL.	Tolerances
APS:	Qx=f(x)	+	+	+	+	-	+	+	20%
	Qy=f(x)	+	+	+		-	+	+	4%, OPA 60% lower
	Qy=f(y)	+	+	+	+	-	+	+	10%, OPA 20 % away
	Qx=f(y)	+	+	+		-	+	+	10%, OPA 20 % lower
SOLEIL:	Qx=f(x)	+	+	+ 🏑	-	+	+	+	20%, OPA is wrong
	Qy=f(x)	+	+	+	+	+	+	+	20%. TRACY factor 2 away
	Qy=f(y)	+	+	- 1	+	+	+	+	20%, TRACY factor 2 away
	Qx=f(y)	+	+	-		+	+	+	+5%', TRACY factor 4 away
ALBA:	Qx=f(x)	+	+	+	+	+	+	+	60%
	Qy=f(x)	+	+	+		+	+	+	30%
	Qy=f(y)	+	+	+	+	+	+	+	35%
	Qx=f(y)	+	-	+		+	-	+	16%, AT and ELEG. away

CODE Comparison: Tune Shift with Amplitude

Explanations to the above table:

1.) The codes with a + (plus) agree relative with each other.

2.) The codes with a - (minus) have large differences to the other codes

3.) 10%) means that the codes (+) agree within a tolernce of 10%

The agreement between the codes are not so good. The differences between the codes are going up to 20 and 40%. OPA and TRACY are sometimes away by a factor 2 to 4. The tolerances are much smaller for APS as for SOLEIL and ALBA

Comparison of non-linear parameters

B.) Tune-shift with Amplitudes

- 1.) The agreement between the codes are not so good.
- 2.) The differences between the codes are going up to 20 and 40%.
- 3.) OPA and TRACY are sometimes away by a factor 2 to 4.
- 4.) The tolerances are much smaller for APS as for SOLEIL and ALBA

Tuneshifts with amplitude from MADX. Red/green: with fringe field. Dots: tracy II, lines: MADX+PTC

Comparison BETA / Tracy

Accelerator Division

0.02

5

D. Einfeld / ALBA-CELLS

OMCM – Workshop, CERN, 20-22 June 2011

Dear Dieter,

- I have read your detailed presentation. I am very impressed with the analysis you did. Thank you.
- Concerning one big discrepancy between codes, I am the following comment: For the tune shift with amplitude, I did some calculation for SOLEIL between MAD_PTC and Tracy II or AT. The agreement is very good. This is not what you show in your slides.
- I do think the issue comes from the way the sextupole is modeled in the various codes (even for the same Hamiltonian). Either a thin sextupole, many thin lenses, 4th order integrator, and ...A least for SOLEIL, if I compare MAD and Tracy II with the same integrator, the results are the same (cf. my talk at Diamond).
- When doing the comparison, we did not communicate on this modeling point. As we see in your slides this is critical. So for me the amazing discrepancy between codes has its origin mainly in the integrator scheme. See you soon,
- **Best Regards**,
 - Laurent.

For all codes:

1.) Qi = F(DE/E)
2.) Qi = F(amplitude x)
3.) Qi = F(amplitude y)
4.) Dynamic aperture

D. Einfeld / ALBA-CELLS

Dynamic Aperture: ALBA

Accelerator Division

30

D. Einfeld / ALBA-CELLS

OMCM – Workshop, CERN, 20-22 June 2011

Dynamic Aperture: APS

Accelerator Division

D. Einfeld / ALBA-CELLS

OMCM – Workshop, CERN, 20-22 June 2011

Conclusions for the Dynamic Aperture

	MAD	AT	TRACY	BETA	OPA	ELEG.	ACCEL.	SUM				
AL BA _3%	+	_	+	+	_	_	+	<u>/+</u>				
ALBA 0%	+	-	+	-	+	-	+	4+				
ALBA +3%	-	-	+	-	-	-	+	2+				
SOLEIL -3%	+	-	+	-	-	-	+	3+				
SOLEIL 0%	+	+	+	-	+	+	+	6+				
SOLEIL +3%	-		-	-	-	-	-					
APS -3%	+	-	+	+	-	-	-	3+				
APS 0%	+	/-	+	+	+	+	+	6+				
APS +3%		-	-	-	-	-	-					
SUM:	6+	1+	7+	3+	3+	2+	6+					

CODE Comparison: Dynamic aperture

Explanations to the above table:

1.) The codes with a + (plus) agree relative with each other.

2.) The codes with a - (minus) dont agree with the + (plus) codes

The agreement between the codes are not so good. The best agreement is for the nominal energy and for negative energy deviations. The agreement between the codes for positive energy deviations is not good.

- 1.) For the nominal energy (DE/E = 0%) the agreement between the codes is pretty good.
- 2.) For negative energy deviations (DE/E=-3%) the agreement is not any more so good.
- 3.) For positive energy deviations (DE/E = +3%) there isn't a good agreement between the codes.

Summary: Comparison of Lattice Codes

Thanks to all the colleagues who made the calculations:

MAD (Zeus Marti, CELLS) **DIMAD** (Les Dallin, CLS) **BETA (Laurent Nadolski, SOLEIL) OPA** (Andreas Streun, SLS) **AT (Xiabiao Huang, SPEARE III) TRACY** (Laurent Nadolski) **ELEGANT (Mike Borland and Louis Emery, APS) ACCELERATICUM (Pavel Piminov, BINP)**

Please make your own conclusion.

Thank you very much

D. Einfeld / ALBA-CELLS