

LHC experience Beta-beat team

Glenn Vanbavinckhove

CERN - NIKHEF

June 20, 2011

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Tools	Injection	Squeeze	Observations	Outlook	Summary
	Tools				
	Injection				
	Squeeze				
	Observations				

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

Outlook

Summary

Observation

Outlook

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Summary

Tools

- Segment-by-Segment
- Global corrections using response matrix

Tools	Injection	Squeeze	Observations	Outlook	Summary

The segment-by-segment technique.

- Used to identify local errors.
- Part of the LHC is treated as a beam line.
- Initial conditions are measured optic values.
- Can be used to identify beta, coupling, dispersion and chromatic errors.

Example S-B-S phase:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example S-B-S coupling:

Example S-B-S dispersion:

・ロト ・聞ト ・ヨト ・ヨト

æ

Tools

Global corrections using response matrix.

•
$$\Delta \phi_{x,y}^{\vec{}}, \Delta \beta_{x,y}^{\vec{}}, \Delta D_{x}^{\vec{}}, Q_{x,y} = \mathbf{R} \Delta \vec{k_1}$$

• $\Delta f_{1001}, \Delta f_{1010}, \Delta D_{y}^{\vec{}} = \mathbf{R} \Delta k s_1$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Tools	Injection

Squeeze

Observations

Outlook

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Summary

Injection

Tools	Injection	Squeeze	Observations	Outlook	Summary

- large $\frac{\Delta\beta}{\beta}$ in 2008 due to cable swap.
- "LSA tuning" adjustments in the polynomials used to model some magnets.
- Local corrections in *IP*₂ and *IP*₈.
- Corrections are zeroed out at 700 GeV.

Days in commissioning

Tools	Injection	Squeeze	Observations	Outlook	Summary

- New calibrations based on magnetic measurements.
- Warm quadrupoles left and right from *IP*₃ and *IP*₇.
- Errors are reduced by factors 2 and 2.5 (except MQWA4.LR3).

(日)

-

Squeeze

In 2010 and 2011 three different optics settings were explored:

- In 2010:
 - All IP's at 2 m.
 - All IP's at 3.5 m.
- In 2011:
 - IP_1 and IP_5 at 1.5 m, IP_8 at 3 m and IP_2 at 10 m.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Tools	Injection	Squeeze	Observations	Outlook	Summary
201	0	emissioning P	* 0		

2010 squeeze commissioning $\beta^* = 2m$:

- IP's were squeezed in steps.
- Corrections in IP₅ and IP₈ were implemented.

< ロ > < 同 > < 回 > < 回 >

э

Т	ools	Injection	Squeeze	Observations	Outlook	Summary
	2010 so	queeze commis	ssioning $\beta^* = 3$	3.5m:		

- Local corrections in IP_1, IP_2, IP_5, IP_6 and IP_8 .
- Global correction for beam 2 reduced the $\frac{\Delta\beta}{\beta}$ in both planes to 10%.
- Incorporation gave an increase in $\frac{\Delta\beta}{\beta}$ because some corrections were not driven.

Tools	Injection	Squeeze	Observations	Outlook	Summar

2011 squeeze commissioning $\beta^* = 1.5$ m:

- Local corrections were implemented.
- Global corrections for beam 1 and beam 2 were implemented.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▲ロト ▲圖ト ▲ヨト ▲ヨト 三回 - のくで

Squee

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Observations

- Optics stability
- Corrections
- BPM performance

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶

æ

Tools

Difference in $\Delta\beta/\beta$ between beginning of fill and end of fill (30 hours).

◆ロ > ◆母 > ◆臣 > ◆臣 > ● ● ● ● ● ●

・ロト ・聞ト ・ヨト ・ヨト

æ

Distribution of correctors vs. s:

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

BPM performance is outstanding, histogram for 2011 shows low failing rate:

Squeeze

Observations

Summary

Outlook and Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Tools	Injection	Squeeze	Observations	Outlook	Summary

Challenge for $7 TeV\beta^* = 0.55 cm$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Squeeze

Observations

Outlook

Summary

Challenge for $7 TeV\beta^* = 0.55 cm$:

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − つく⊙

- Local and global algorithms have been successfully applied.
- $\frac{\Delta\beta}{\beta}$ at injection remains at 30%, but can be corrected if needed.
- Squeezed optics the $\frac{\Delta\beta}{\beta}$ is well within tolerances (10%) for 2011.

- Small difference in $\frac{\Delta\beta}{\beta}$ is observed for long fills and at injection.
- Challenge remains for $7 TeV\beta^* = 0.55 cm$.

Squeez

Observations

Outlook

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Summary

Questions ?

Tools	Injection	Squeeze	Observations	Outlook	Summary

Local corrections are found to work similarly between $\beta^*=3.5{\rm m}$ and 1.5m in IR1, IR5, IR6 and IR8:

Corrector	$\Delta K [10^{-5} m^{-2}]$	Relative [%]
kq9.l1b1	3.8	0.60
ktqx2.r1	-0.8	0.09
ktqx2.l5	1.0	0.11
ktqx2.r5	1.3	0.15
kq5.l6b2	-4.6	0.70
ktqx2.l8	-2.3	0.26
ktqx2.r8	-0.5	0.06

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Tools	Injection	Squeeze	Observations	Outlook	Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Tools	Injection	Squeeze	Observations	Outlook	Summary

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ○ ○ ○ ○

Identical tunes after 1 hour of K-modulating.

Tools	Injection	Squeeze	Observations	Outlook	Summary

case	IF	81	IR5		
	Ave	rms	Ave	rms	
B2H	1.57	0.11	1.48	0.11	
B2V	1.57	0.09	1.52	0.09	
B1H	1.53	0.15	1.50	0.15	
B1V	1.50	0.06	1.52	0.06	

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Maximum β^* -beating = 4.7%. CMS gets (2.5±8)% more luminosity.

Tools	Injection	Squeeze	Observations	Outlook	Summary

▲ロ > ▲母 > ▲ 国 > ▲ 国 > ― 国 ― の Q ()