Preliminary check on LHC 2022 Data

Eugenio Berti LHCf Collaboration meeting *Nagoya, 16-17 October 2023*

Introduction

- Pedestal distributions: stability and noise
- Impact of electric noise on energy resolution
 - Investigation on the origin of π^0 mass shift
- Estimation of beam projection on detector plane
- Preliminary photon spectrum from Run III data

Pedestal distributions

Motivation

We need to check pedestal distributions for at least 4 different reasons:
A) Estimate the <u>pedestal level</u> to be subtracted from the beam events
B) Check wether <u>delayed gate</u> subtraction reduce the amount of noise
C) Estimate the <u>noise level</u> to be introduced as smearing in simulation
D) Check if there is a <u>mean offset</u> between pedestal and beam events

Points A-C) can be studied using *Pedestal* events only Points D) requires both pedestal and *NoShower* events

→ NoShower means beam events without shower and in 2022 data it means ZDC-triggered events: pedestal cleaning and distribution fit procedures are applied since shower contamination is unavoidable

GSO: Mean and RMS without delayed gate subtraction

Run 80262-80346 **Pedestal** events **NoShower** events

GSO: Mean and RMS with delayed gate subtraction

Run 80262-80346

Pedestal events **NoShower** events

GSO: Mean offset between Pedestal and Beam events

Run 80262-80346 **Pedestal** events **NoShower** events

Silicon: Mean and RMS

Run 80262-80346

Pedestal events **NoShower** events

Contamination in *NoShower* events is more visible in silicon, but this information is not used and, in any case, it does not significantly impact on the average value.

Impact of electric noise

Layer		R	MS (2015)	RMS (2022)		
	0		16.61		38.952	
	1		14.728		51.614	
	2	с С	23.709		34.299	
	3	ga.	15.508		34.286	
	4	/ed	18.887	н	54.261	
Ver	5	laj	26.313	sta	94.775	
10 F	6	-de	19.513	ede	38.821	
111	7	tal	18.593	р Д	43.35	
Sma	8	des	22.03	r oi	71.063	
	9	D D D	15.979	ч	33.483	
	10	LOM	27.169		49.067	
	11	ÿ	36.924		38.354	
	12		20.399		64.829	
	12		21 614		72 307	

Noise level comparison

The larger noise level, together with the inability to use delayed gate subtraction, makes 2022 data more exposed to electronic noise, with possible implications on resolution of: *Energy L*_{90%}

In the following, we consider only the impact on the reconstructed *Energy*, since the impact on *L*_{90%} should not be a problem if the noise effect is well reproduced in simulation smearing

Estimation

In order to estimate the impact of noise, we consider SPS simulation for 244 GeV electrons incident on 5x5mm² area on ST.

The simulation is reconstructed using the GSO gain factors from 2022 data, but with different energy smearing:

- · without any kind of smearing
- smearing using 2015 noise
- smearing using 2022 noise

NB Smearing is applied by directly taking the pedestal events acquired during operations in order to consider correlation.

Smearing

Pedestal of TS NRADC in 2022

Result

Investigation on the origin of π^0 mass shift

Motivation

Di-photon invariant Mass

Giuseppe found a 11.25% shift in the Type I invariant mass, which is a rather large value...

This effect was investigated by applying a narrow cut in the reconstructed energy ([500, 550] GeV) and comparing the average layer-by-layer energy deposit between <u>2015 and 2022 Data</u>

The same study was repeated for simulations with and without an artificial energy scale shift

Study

Simulation

Data

Average Longitudinal Profile

Excluding layer 0 (beam halo effect?), considering the more limited statistics in Data, the residuals on GSO layer gain calibration, and the absence of temperature corrections, the trend is compatible

The 11.25% shift seems due mostly to <u>global factor</u> rather than a layer-by-layer gain calibration effect.

Estimation of beam center position

Method

Historically, beam center position is estimated by comparing two different determination methods

It is interesting to notice that the two methods differ not only because of the function, but also because of the implicit assumption that x and y width can or cannot be different

Update of 2D function

Run-by-run stability

Run-by-Run result is mostly **stable** inside each of the five large data set

A <u>global</u> beam center parameter for each data set is enough

Run 80262-80346

Y offset during 2nd and 4th large data set

> Something happened during emittance scan: beam change or <u>manipulator offset</u>?

Run 80351-80431 must be divided in two:

- Run 80351-80372
- Run 80377-80431

Run 80523-80626 can be kept as it is since it is just a 0.1 mm offset acting on just 10 runs

Preliminary Arm2 Beam Center Position

Run	80262-	80351-	80377-	80434-	80523-	80635-
	80346	80372	80431	80520	80626	80646
x ₀ [mm]	3.630	3.660	3.654	3.650	3.680	3.517
	-0.160 ^{+0.231}	-0.216 ^{+0.248}	-0.236 ^{+0.236}	-0.184 ^{+0.174}	-0.212 ^{+0.250}	-0.229 ^{+0.156}
y₀[mm]	-0.880	-6.602	-5.985	-0.971	-5.827	-0.954
	-0.190 ^{+0.153}	-0.124 ^{+0.100}	-0.074 ^{+0.077}	-0.205 ^{+0.125}	-0.070 ^{+0.058}	-0.470 ^{+0.138}

These numbers must be updated after fixing two different problems:

- correct and uniform library for (x,y) projection along different z
- update GSO gain factor after completing calibration procedure

Preliminary photon spectra

Motivation

Main motivations are:

- INFN milestone for this year!
 - Test of the updated library
- Check overall data quality:
- > Agreement with 2015 result
- Statistics increase wrt 2015

Main steps of the analysis:

- Beam background correction
 - PID correction
- Unfolding (+ Multihit correction)
 - Decay correction

Main approximations wrt 2015:

- Using pp@13 TeV simulations
- Using temporary gain factors (but correcting for 11.25% shift)
- Inconsistent (x,y) projection over z

NB: Using two large data set with Arm2 in nominal detector position events

NB: Selecting only L2TShower events

Raw Counts

Raw distributions

PID correction

Unfolded distributions (After PID&MH corrections)

Data from 2022 with stat error only

TODO List

TODO List From most urgent to least urgent

- Start simulations relative to pp@13.6 TeV!
 - Complete GSO (and silicon) calibration
 - Fix (x, y) projection over z in the library
- Re-estimate beam center for each data set
- Develop photon analysis in the new library
- Estimate integral luminosity for each data set

Check Type I and Type II invariant mass as a function of the energy

Implement silicon electronics calibration procedure (and run it)

An example

Run 80262-80346

An example

Run 80262-80346

Noise in SPS2022 and LHC2022

Noise Comparison

No smearing Smearing 2015 Smearing 2022

Cross check using smearing 2022

