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Status 
Most parts finished, but still several points to be updated
• Before I left Nagoya this February, 


• The draft of the analysis note was uploaded. 

• Analysis, but several missing parts

• I’m now working on the FASER experiment at University of Bern, but also very slowly updating this analysis.


• Most parts of the analysis were finished but 

• Validation of analysis procedure using ATLAS-LHCf full simulation

• A correction factor of detection efficiency 


• Eugenio did an analysis. 

• I need to implement it in the analysis


• Internal note 

• I made a draft, but no comments from the ATLAS side. 


• Works not finished before this February

• Several minor updates of calculations 

• Cross-check of the detection efficiency of LHCf detector

• Validation of all procedures of analysis using ATLAS-LHCf common simulation instead of experimental data. 

• Analysis note
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Motivation of analysis
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Differences due 
to the modeling 
of MPI.

The number of charged particles in |η | < 2.5

Multi-parton interaction
The modeling of multi-parton interaction (MPI) affect central-forward correlation.
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Proposed by S. Ostapchenko et al, 
Phys. Rev. D 94, 114026

EPOS-LHC and QGSJET predict strong central-
forward correlation; if high energy neutrons are 
measured by the LHCf detector, the number of high 

 (high MPI) events is very small. 

On the other hand, SIBYLL 2.3 and PYTHIA show 
weaker central-forward correlation.

Nch

Initial part of Parton cascade are modeled as : 

Remnant energy - number of MPI correlation: 

     Small                                 Large

The number of multi-patron interactions ->  
The energy of remnants -> neutrons in LHCf

Nch

universal state 

(PYTHIA and SIBYLL)

superposition of partons 
(EPOSLHC and QGSJET II).



Central region 

Central region 

Two parton interactions for example
A: PYTHIA and SIBYLL
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Two parton interactions share the 
energy of parton.

Remnants 
LHCf detector  

Each parton interaction is associated with a parton.
Remnants 

LHCf detector  

B: QGSJET and EPOSLHC

Based on explanations by T. Pierog. 

Motivated as MPI is superposition of 
independent parton-parton interactions. 

Motivated as total of MPI energy is 
calculated from kinematic overlapping of pp



Energy transferred into central region correlated with 
the number of interacting patrons ( = number of MPI)

Central region 

Central region 

Three parton interactions for example
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Three parton interactions share the 
energy of parton.

Remnants 
LHCf detector  

Each parton interaction is associated with a parton.
Remnants 

LHCf detector  

A: PYTHIA and SIBYLL
B: QGSJET and EPOSLHC

Based on explanations by T. Pierog. 

Remnant energy ->  
Smaller than A

Energy transferred into central region defined 
by the energy fraction of one emitted parton. 



Analysis strategy 
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ATLAS-LHCf Run2 data analysis
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cite: The ATLAS Collaboration

140 m

LHCf Arm2

LHCf Arm2 detector

Dataset:  
Taken in 2015.  = 13 TeV.

(from 22:32 to 1:30 (CEST) on June 12-13, LHC Fill 3855) 


s

Lint = 0.191 ± 0.4 nb−1

MC:  
Full simulation:  collisions (QGSJET), 


 collisions (EPOSLHC)

Collision + propagation:  collisions 

(QGSJET, EPOSLHC, SIBYLL 2.3, PYTHIA 8.212DL)

Artificial MC for the Multi-hit correction factor. 

108

5 × 107

109

Detector  
LHCf: LHCf Arm2 

Neutrons with contamination 
of K0 and 

ATLAS: inner tracker

The number of tracks made 
by charged particles

Λ



Fiducial regions of the analysis 
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Fiducial regions  
 in   : . 


Energy of hadrons : 

Neutral hadrons with  in  (Region 1) or  (Region 2) 

                          At 140 m from interaction points 

Ncharged |η | < 2.5 10 ≤ Ncharged < 80

E > 1 TeV 8.99 < η < 9.22 8.81 < η < 8.99

In analysis, to consider migrations,  
 in ATLAS inner tracker : 


Energy of hadrons in LHCf : 

Hadron-like events with  in  (Region 1) or  (Region 2) 

                               for LHCf-Arm2 detector

Ntrack 2 ≤ Ntrack < 140

Ereconstructed > 250 GeV 8.99 < η < 9.22 8.81 < η < 8.99
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Figure from 
analysis note for 
photon analysis

definition of  
was changed.

Ntrack

Black : experimental data.

Red : diffraction (MC)

Blue : all (MC) 



Analysis procedure and updates from the last report
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Event selection Correction Unfolding 
(Erec, Ntrack) → (Etrue, Nch)

Analysis procedure  

• LHCf detector 

• Hadron-like events using 

PID 

• 

• No multi-hit event 

selections

• With the number of tracks in 

ATLAS inner tracker

•  > 0.1 GeV/c, D0 < 1.5 

mm

• “good tracks” definitions


• Primary vertex, Z0, 
number of pixel hit etc. 

Erec > 250 GeV

pT

Background 

• Collisions with gas in beam pipe

• Beam pipe materials

LHCf related 

• Particle ID correction

• Multi-hit correction 

• Position migration correction

• Fake events in LHCf 

• Contaminations 

After unfolding 

• Miss events in LHCf

The method developed in LHCf-
Arm2 analysis was implemented. 



Correction factor 

Particle ID 
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Data + MC (fitting)

Photons 

Hadrons 
Purity and efficiency 
of PID event selection 

PID correction factor

Template fitting of 
experimental data 

Parameter of the depth of 
the shower developments. 

PID threshold

L2D

Blue:

HadronRed:


Photon PID correction for 

Regio A,  = 0Ntrack

Reconstructed energy [GeV]

Background Correction
Beam pipe background

(Only in systematic uncertainty)Detector

Gas in beam pipe

Beam gas 
background

Estimated using non-colliding bunch 

MC driven

Data driven
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Correction factor 
Position migration, fake/miss 
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MC driven

Position migration
Migration due to the position resolution

Position resolution;  100 µm for > 3TeV 

Fake correction 
Fake events due to 250 GeV energy cut and 
energy resolution. 

Miss correction (apply after unfolding) 
Events without interactions in the detector. 
(LHCf detector: 1.6 interaction length,  
 ~ 20-30% events are without interactions 
at high energy)  
And miss events due to energy threshold cut 

Three analysis region 
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Correction factor — Multi-hit correction
MC tuning using the multi-hit reduced sample
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Photon

Hadron
Photon + hadron multi-hit events have larger signals in the first 6 layers. 

Sum of dE in layer 0-5 [GeV]
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Singlehit + Multihit

Multihit

Multihit with photon above 100 GeV

Singlehit, photon contamination

Large tower, Region 1 (by reconstructed positions), 

,  GeV, passed software trigger L2D > 25. Erec > 250

SIBYLL 2.3, 
 collisions107

Multi-hit reduced samples by selecting  
(sum of dE in the first 6 layers) < 3.0 GeV
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Ratio = (multi-hit reduced)/(nominal spectrum)

-> Calculate the normalization factor for 
multi-hit events from experimental data



Template fitting 
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Minimizing the following value








Parameter  is fixed to 1.0 

∑
(Rdata − RMC)2

σRdata + σRMC

RMC =
αNsingle−photon

cut + βNsingle−hadron
cut + γNmultihit

cut

αNsingle−photon + βNsingle−hadron + γNmultihit

β

Ratio of multi-hit reduced to inclusive 
Large tower, Region 1 (by reconstructed positions), 


,  GeV, passed software trigger L2D > 25. Erec > 250
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Apply data-driven factors
Multi-hit correction after applying the data-driven normalization factor

15

Reconstructed Energy [GeV]
0 2000 4000 6000 8000 10000 12000 14000

 M
ul

tih
it 

C
or

re
ct

io
n 

Fa
ct

or

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
SIBYLL 2.3

EPOS-LHC

QGSJET II-04

ATLAS-LHCf internal
 = 13 TeVsp-p, 

 < 9.22η8.99 < 
 < 16track N≤10 

Region 1

No factor applied

Reconstructed Energy [GeV]
0 2000 4000 6000 8000 10000 12000 14000

 M
ul

tih
it 

C
or

re
ct

io
n 

Fa
ct

or

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
SIBYLL 2.3

EPOS-LHC

QGSJET II-04

ATLAS-LHCf internal
 = 13 TeVsp-p, 

 < 9.22η8.99 < 
 < 16track N≤10 

Hatched regions: considering errors in factors 

Error bar: statistical errors of MC.



Apply data-driven factors
Multi-hit correction after applying the data-driven normalization factor
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Error bar: statistical errors of MC.

Ntrack dependency of the multi-hit correction was validated 
and tuned using the experimental data.
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Status of corrections and systematic uncertainties

Results before unfolding

17

Correction factors Systematic uncertainties Spectrum before unfolding  
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Details of analysis: 
Unfolding 
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Two dimensional unfolding 
Extend the method for LHCf-Arm2 analysis 
• Strategy 


• Two dimensional unfolding using RooUnfold package

• Iterative baysan method 


• Extend the method for LHCf-Arm2 analysis 

• LHCf-Arm2 analysis : https://doi.org/10.1007/JHEP11(2018)073


• Two dimensional histograms for inputs/outputs


•  and  for input /  and  for output

• Response matrix 


• 1D response from ATLAS full simulation & 1D response from LHCf full simulation 

• Assumption : detector response of ATLAS and LHCf detector are independent 


• Update 

• Performance test of unfolding 

• Systematic uncertainty 

• Candidate of final plots 


• Remaining works 

• Systematic uncertainty due to unfolding

Erec Ntrack Etrue Ncharged
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https://doi.org/10.1007/JHEP11(2018)073
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MC sample  
ATLAS full simulation / LHCf full simulation 

Response Matrix  

Before  
unfolding 

Unfolded spectrum 

Update from the last report :  
Performance test of the unfolding method using the 
ATLAS-LHCf full MC. Then, the systematic uncertainty 
was estimated. 

Two dimensional unfolded spectrum 

Projection to each axis  
Ratio of spectrum after projection 
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Unfolding performance test
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Systematic uncertainty 
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Unfolded result 

23

Energy [GeV]
0 2000 4000 6000 8000 10000 12000 14000

R
el

at
iv

e 
U

nc
er

ta
in

ty

0.6

0.8

1

1.2

1.4
ATLAS-LHCf internal

 < 16
track

 N≤ < 9.22 - 10 η8.99 < 

Energy [GeV]
0 2000 4000 6000 8000 10000 12000

R
el

at
iv

e 
U

nc
er

ta
in

ty

0.6

0.8

1

1.2

1.4
ATLAS-LHCf internal

Beam Gas
Beam Pipe
Energy
Beam Center
PID

inelN
Position
Multihit
Contamination

intσ

 < 16
track

 N≤ < 8.99 - 10 η8.81 < 

Systematic uncertainty

Before unfolding 

/d
E 

[m
b/

G
eV

]
n

σd
0

0.02

0.04

0.06

0.08

0.1

0.12

3−10×

 < 16
track

 N≤ < 8.99 - 10 η8.81 < 

ATLAS-LHCf internal
 = 13 TeVsLHCf p-p 

QGSJET II-04

EPOS-LHC

SIBYLL 2.3

Energy [GeV]
0 2000 4000 6000 8000 10000 12000

R
at

io

0

0.5

1

1.5

2

Spectrum before 
unfolding 

/d
E 

[m
b/

G
eV

]
σd

0

0.05

0.1

0.15

0.2

0.25

0.3
3−10×

=13 TeVsATLAS-LHCf, p-p 
EPOS-LHC
QGSJET II-04
SIBYLL 2.3
PYTHIA 8.212 DL

ATLAS-LHCf internal
 = 13 TeVsp-p, 

 < 9.22η8.99 < 

 < 16
charged

 N≤ < 9.22 - 10 η8.99 < 

 E [GeV]
1000 2000 3000 4000 5000 6000

 R
at

io

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2



E [GeV]
1000 2000 3000 4000 5000 6000

R
al

at
iv

e 
U

nc
er

ta
in

ty

1−

0.5−

0

0.5

1

 < 16
charged

 N≤ < 9.22 - 10 η8.99 < 
Energy Scale
Beam Center
PID Cor.
Int. Lum.
Pos. Res.
Multihit Cor.
Hadron Cont. Corr. 
Int. CrossSec.
Method
Missed Events Corr.

ATLAS-LHCf internal
 = 13 TeVsp-p, 

 < 9.22η8.99 < 

 < 16
charged

 N≤ < 9.22 - 10 η8.99 < 

Propagation of systematic uncertainty 
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Missing points and updates after 
February
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Validation of analysis procedure
There is a problem…… all spectra shows a factor 6/10 difference.
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I used the same code for the data. 

Maybe, there is a bug in my code……



Detection efficiency (analyzed by Eugenio) 
Data-driven validation of the trigger efficiency
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LHCf Arm2 detector LHCf Arm1 detector

Dataset: events triggered by 
the Arm1 or Arm2 detector
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Arm2 neutron-like events selection 
• Arm2 software trigger 

• Position in the analysis regions

• 


•
L2D > Lthres
Ereco > 250 GeV

Select neutron-like 
events in all data-set



Detection efficiency (analyzed by Eugenio) 
Data-driven validation of the trigger efficiency
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Dataset: events triggered by 
the Arm1 or Arm2 detector
Arm2 neutron-like events selection  
• Arm2 software trigger 

• Position in the analysis regions

• 


•
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Ereco > 250 GeV

Select neutron-like 
events in all data-set
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I will add this correction later. 

Data/MC difference 
is less than 5% 
above 500 GeV 



Summary

• There is a clear difference in the central-forward correlations between hadronic interaction models 
due to the modeling of the multi-parton interactions. 

• By measuring the very forward neutron productions as a function of the number of charged 

particles in the central detectors, we can constrain this modeling

• Most parts of the analysis were finished and the internal note was mostly filled.


• The multi-hit correction was a major issue of this analysis for a few years, but finally, we found a 
good method to estimate it. 


• Detection efficiency was a major comment given in the last ATLAS soft QCD meeting. It was 
calculated by Eugenio. 


• But I have several remaining parts 

• Unknown factor differences in the procedure validation.

• Add the detection efficiency correction.

• The binning of the number of charged particles, especially , has to be finalized 

since it was asked in the last ATLAS soft QCD meeting.

• Finalize the internal note

Ncharged < 10
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Back-up
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Recent paper by ALICE-ZDC 
Similar study was performed by ALICE-ZDC (arXiv : arXiv:2107.10757 ) 

• Using ALICE-ZDC, they show correlation between 
multiplicity in  and forward signals. 

• Neutron modules of the ALICE-ZDC cover 

. 

• Proton modules cover . 


• They do not convert signals to energy, but normalize 
signals by the mean of signals with minimum-bias 
measurements. 


• Differences between models are caused by MPI 
mechanism. 


• Advantage of ATLAS-LHCf measurements

• We can measure forward neutron energy, so we can 

compare energy spectrum with selections by 
multiplicity. 

|η | < 1

|η | > 8.8
6.5 < |η | < 7.4
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ALICE results, arXiv:2107.10757 / 
CERN-EP-2021-144 

Ratio of mean of the number of charged 
particles to minimum-bias measurements 

Ra
tio

 o
f Z

DC
 s

ig
na

ls
 to

 m
ea

n 
of

 Z
DC

 
si

gn
al

s 
in

 m
in

im
um

-b
ia

s 
m

ea
su

re
m

en
ts

 

http://arxiv.org/abs/arXiv:2107.10757


Recent paper by ALICE-ZDC 
Similar study was performed by ALICE-ZDC (arXiv : arXiv:2107.10757 ) 

• Using ALICE-ZDC, they show correlation between 
multiplicity in  and forward signals. 

• Neutron modules of the ALICE-ZDC cover 

. 

• Proton modules cover . 


• They do not convert signals to energy, but normalize 
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measurements. 
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• Advantage of ATLAS-LHCf measurements

• We can measure forward neutron energy, so we can 
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multiplicity. 
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6.5 < |η | < 7.4

32

ALICE results, arXiv:2107.10757 / 
CERN-EP-2021-144 

Ratio of mean of the number of charged 
particles to minimum-bias measurements 
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Validation and tuning of multi-hit predictions 
Using first 6 layers as veto of multi-hit events 
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Photon

Hadron

• In multihit events with photon and hadron in a tower, 

• An electromagnetic shower develops in early parts of the 

calorimeter tower. 

• A hadronic shower develops in later parts of the calorimeter 

shower. 

• So most of h +  multihit events, energy deposits in early layers 

are expected. 

• Idea 


• Make multi-hit reduced/enhanced samples using energy 
deposits in early layers. 


• Then, validate MC predictions from comparison of energy 
spectra of these samples. 

γ

Position sensitive layers before layer 2/5/8

=> energy deposits in layer 2,5,8 were affected. 

(Larger gaps between tungsten and scintillator.)
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Photon

Hadron
Large tower, Region 1 (by reconstructed positions), 


,  GeV, passed software trigger L2D > 25. Erec > 250

Black : all events 

Orange : multi-hit in true level

Magenta : multi-hit, h + ,  for each

Blue : single-hit photon (contamination) 

γ Etrue > 100 GeV

Ratio of each sample 
in all events

We can select the multi-hit reduced 
sample by selecting small energy 
deposits in the first 6 layers. 

SIBYLL 2.3, 
 collisions107



Reconstructed energy
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Photon

Hadron
Large tower, Region 1 (by reconstructed positions), 


,  GeV, passed software trigger L2D > 25. Erec > 250

Black : all events 

Blue : small energy deposits (Multi-hit reduced sample)

Magenta : large energy deposits (Multi-hit enhanced sample)

Ratio of energy 
spectrum

Possibility of validation!! 

SIBYLL 2.3, 
 collisions107



Ratio of energy spectrum 
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Large tower, Region 1 (by reconstructed positions), 

,  GeV, passed software trigger L2D > 25. Erec > 250

Photon

Hadron
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Ratio = (multi-hit reduced)/(nominal spectrum)

We found differences between data and MC predictions.
=> Template fitting using two free parameters for the normalization 
of contamination and multi-hit events 

Step 1) Get a multi-hit normalization factor  for the multi-hit 
corrections using the template fitting. 

Step 2) Apply the factor  and its error to the multi-hit predictions 
and get modified multi-hit corrections and its error. 


  (correction before tuning) 


 =>     (correction after tuning)


γ

γ

CMH =
NMH ideal + NSH

NMH obsreved + NSH

CMH =
γNMH ideal + NSH

γNMH obsreved + NSH



Template fitting 
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Minimizing the following value








Parameter  is fixed to 1.0 

∑
(Rdata − RMC)2

σRdata + σRMC

RMC =
αNsingle−photon

cut + βNsingle−hadron
cut + γNmultihit

cut
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β

Ratio of multi-hit reduced to inclusive 
Large tower, Region 1 (by reconstructed positions), 
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Template fitting using EPOS-LHC
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Ratio of multi-hit reduced to inclusive 
Large tower, Region 1 and 2 (by reconstructed positions), 


,  GeV, passed software trigger L2D > 25. Erec > 250
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Apply data-driven factors
Multi-hit correction for 10 ≤ Ntrack < 16
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The data-driven factor was applied. 



Apply data-driven factors
Multi-hit correction after applying the data-driven normalization factor
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Apply data-driven factors
Multi-hit correction after applying the data-driven normalization factor
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Backup - unfolding
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Response matrix for ATLAS tracks  
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The number of iteration 
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 : the  between the outputs 
of two consecutive iterations 
Δχ2 χ2

 Iteration
0 2 4 6 8 10 12 14 16 18

2  χ 
∆ 

1

10

Region 1

the number of iteration :

 becomes less than 1Δχ2

the number of iteration depends on input 
spectrum and the response matrix.



Preliminary final results
Region 1 
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List of updates from the last report 
• Last reports


• June 2021 — updates of multi-hit corrections and status of unfolding 

• 2022 Apr. 25th  — status of multi-hit corrections and candidate of final plots


• Many comments about multi-hit corrections, unfolding, and fiducial region. 

• Updates from the last report


• Multi-hit corrections: MC-driven corrections with the data-driven tuning of MC

• Unfolding: performance test and a systematic uncertainty of the unfolding method

• Final plots

• Updates related to the comments in the last soft QCD meeting. 


• Add  to the final plots

• Updates in multi-hit corrections


• Remaining works :

• Minor updates of calculations 

• Validation of all procedures of analysis using ATLAS-LHCf common simulation instead of experimental 

data.

• Analysis note 

6 ≤ Ncharged < 10
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Physics motivation 
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Three physics motivations of correlation analysis  
between forward neutrons (LHCf) and central activitiy (ATLAS)
1) : MPI modeling (main target of this analysis)
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2) : forward hadron productions from diffraction

3) : One pion exchange process 3). One pion exchange, 

Forward neutron 

And virtual pion - proton collision

!"

!# !$
ℙ

dissociation 
system

Forward neutron
2). Diffraction -> forward neutron 1) modeling of Multi-parton interaction 

Different prediction of correlations 
between remant energy and the number 
of MPI (details in next slides) 

Key to improve prediction power of 
models for cosmic-ray physics. 

Measurement of p-pi collisions 
  - cross-section of p-pi 
  - Multiplicity at p-pi 
-> No data in high energy and 
important for cosmic-ray air 
shower physics. 

LHCf neutron ->  Remnant energy 
Ntrack in ATLAS ->  Number of MPI Forward baryon 

productions in diffraction. 

Similar as photon analysis 
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Differences due 
to the modeling 
of MPI.

The number of charged particles in |η | < 2.5

Multi-parton interaction
The modeling of multi-parton interaction (MPI) affect central-forward correlation.
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Proposed by S. Ostapchenko et al, 
Phys. Rev. D 94, 114026

EPOS-LHC and QGSJET predict strong central-
forward correlation; if high energy neutrons are 
measured by the LHCf detector, the number of high 

 (high MPI) events is very small. 

On the other hand, SIBYLL 2.3 and PYTHIA show 
weaker central-forward correlation.

Nch

Initial part of Parton cascade are modeled as : 

Remnant energy - number of MPI correlation: 

     Small                                 Large

The number of multi-patron interactions ->  
The energy of remnants -> neutrons in LHCf

Nch

universal state 

(PYTHIA and SIBYLL)

superposition of partons 
(EPOSLHC and QGSJET II).



Central region 

Central region 

Two parton interactions for example
A: PYTHIA and SIBYLL
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Two parton interactions share the 
energy of parton.

Remnants 
LHCf detector  

Each parton interaction is associated with a parton.
Remnants 

LHCf detector  

B: QGSJET and EPOSLHC

Based on explanations by T. Pierog. 

Motivated as MPI is superposition of 
independent parton-parton interactions. 

Motivated as total of MPI energy is 
calculated from kinematic overlapping of pp



Energy transferred into central region correlated with 
the number of interacting patrons ( = number of MPI)

Central region 

Central region 

Three parton interactions for example
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Three parton interactions share the 
energy of parton.

Remnants 
LHCf detector  

Each parton interaction is associated with a parton.
Remnants 

LHCf detector  

A: PYTHIA and SIBYLL
B: QGSJET and EPOSLHC

Based on explanations by T. Pierog. 

Remnant energy ->  
Smaller than A

Energy transferred into central region defined 
by the energy fraction of one emitted parton. 



Analysis strategy and status 
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Analysis strategy 
Extend ATLAS-LHCf photon analysis to LHCf neutron events
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ATLAS-LHCf photon analysis 
No tracks in ATLAS inner tracker + 
LHCf photon  
(To select forward photons 
produced by diffraction)

ATLAS-LHCf neutron analysis 
(This analysis)  

Number of tracks  
    in ATLAS inner tracker  
+ energy of hadrons in LHCf

Key for this extention
-  Multi-hit correction 
    -  No good identification method of multi-hit for 
neutrons in LHCf
    -  Large model dependency of correction factors 
-  2D Unfolding 
    -  40% energy resolution (<5% for photons )
    -  N_track > 2 (migration and background)



LHCf detector 
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What we measured: hadrons at 140 m from IP,  
neutrons with contaminations of K0 and Λ

Some particles decay in beam pipe 

IP Magnets / Decay Detector

~140 m from IP

Dataset:  
Taken in 2015.  = 13 TeV.

(from 22:32 to 1:30 (CEST) on June 12-13, LHC Fill 3855) 


s

Lint = 0.191 ± 0.4 nb−1

MC:  
Full simulation:  collisions (QGSJET), 


 collisions (EPOSLHC)

Collision + propagation:  collisions 

(QGSJET, EPOSLHC, SIBYLL 2.3, PYTHIA 8.212DL)

Artificial MC for the Multi-hit correction factor. 

108

5 × 107

109

Resolution for hadrons:  
- 40% energy resolution  
( 1.6 interaction length) 

- 100  position resolution

for high energy 

- 70% detection efficiency at 2 TeV

μm

LHCf Arm2 detector
Sampling calorimeter

32 mm
25 mm



Fiducial regions of the analysis 
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Fiducial regions  
 in   : . 


            We added plots for  following comments in the last meeting.

Energy of hadrons : 

Neutral hadrons with  in  (Region 1) or  (Region 2) 

                          At 140 m from interaction points 

Ncharged |η | < 2.5 10 ≤ Ncharged < 80
6 ≤ Ncharged < 10

E > 1 TeV 8.99 < η < 9.22 8.81 < η < 8.99

In analysis, to consider migrations,  
 in ATLAS inner tracker : 


Energy of hadrons in LHCf : 

Hadron-like events with  in  (Region 1) or  (Region 2) 

                               for LHCf-Arm2 detector

Ntrack 2 ≤ Ntrack < 140

Ereconstructed > 250 GeV 8.99 < η < 9.22 8.81 < η < 8.99
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Analysis procedure and updates from the last report
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Event selection Correction Unfolding 
(Erec, Ntrack) → (Etrue, Nch)

Analysis procedure  

• LHCf detector 

• Hadron-like events using 

PID 

• 

• No multi-hit event 

selections

• With the number of tracks in 

ATLAS inner tracker

•  > 0.1 GeV/c, D0 < 1.5 

mm

• “good tracks” definitions


• Primary vertex, Z0, 
number of pixel hit etc. 

Erec > 250 GeV

pT

Background 

• Collisions with gas in beam pipe

• Beam pipe materials

LHCf related 

• Particle ID correction

• Multi-hit correction 

• Position migration correction

• Fake events in LHCf 

• Contaminations 

After unfolding 

• Miss events in LHCf

The method developed in LHCf-
Arm2 analysis was implemented. 

Most of correction and systematic 
uncertainties are calculated.  
We found large model 
dependencies in Multi-hit 
correction. -> next section 
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Status of corrections and systematic uncertainties

Results before unfolding
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Correction factors Systematic uncertainties Spectrum before unfolding  
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Multi-hit correction 
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Multi-hit events in LHCf 
Sometimes, two particles hit in a calorimeter tower 
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Photon 

Neutron  
Current reconstruction produces in 
LHCf detector:  
We cannot reject multi-hit events with 
hadron and photon or two hadrons hit 
in a calorimeter tower.

Neutron 

Neutron  Beam center

LHCf-Arm2 detector and 
analysis region

These multi-hit events affect reconstructed energies. 

In LHCf-Arm2 stand alone analysis, these effects are corrected 
by MC-driven correction factors. 
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Method used in LHCf analysis
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Large hadronic interaction model dependencies

MC driven

Photon 

Neutron  Neutron  

Photon 

Correction was calculated using two simulation: 
Simulation (observed) Simulation (ideal)

Compare two 
energy spectra

Multi-hit 
correction factor

Reconstructed energy [GeV]

10  Ntrack <16≤

Region A Region B Region C 

Three analysis region 

Large model dependencies  
Magenta : EPOSLHC

Blue : QGSJET II-04

Green : SIBYLL 2.3



Status of multi-hit corrections 
• In the LHCf stand-alone analysis, the corrections were calculated by the MC-driven method. 

• Clearly, we have large uncertainty due to hadronic interaction models. 

• We tried several ways to validate and tune the hadronic interaction models.


• In the last report on 2022 Apr. 25th, we reported one method using the experimental data. 

• But uncertainty in the method was too large. 


• In the discussions with ATLAS members on May 2022, we got another idea.

• The first several layers of the LHCf detector are useful to select multi-hit events. 

• So, we try to select multi-hit enhanced events and then validate hadronic interaction models. 

• Finally, we calculated a data-driven normalization factor for multi-hit contributions. 

• Then, we calculated multi-hit corrections in the MC-driven method but with tuning of MC predictions. 
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Validation and tuning of multi-hit predictions 
Using first 6 layers as veto of multi-hit events 
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Photon

Hadron

• In multihit events with photon and hadron in a tower, 

• An electromagnetic shower develops in early parts of the 

calorimeter tower. 

• A hadronic shower develops in later parts of the calorimeter 

shower. 

• So most of h +  multihit events, energy deposits in early layers 

are expected. 

• Idea 


• Make multi-hit reduced/enhanced samples using energy 
deposits in early layers. 


• Then, validate MC predictions from comparison of energy 
spectra of these samples. 

γ

Position sensitive layers before layer 2/5/8

=> energy deposits in layer 2,5,8 were affected. 

(Larger gaps between tungsten and scintillator.)
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Photon

Hadron
Large tower, Region 1 (by reconstructed positions), 


,  GeV, passed software trigger L2D > 25. Erec > 250

Black : all events 

Orange : multi-hit in true level

Magenta : multi-hit, h + ,  for each

Blue : single-hit photon (contamination) 

γ Etrue > 100 GeV

Ratio of each sample 
in all events

We can select the multi-hit reduced 
sample by selecting small energy 
deposits in the first 6 layers. 

SIBYLL 2.3, 
 collisions107



Reconstructed energy
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Photon

Hadron
Large tower, Region 1 (by reconstructed positions), 


,  GeV, passed software trigger L2D > 25. Erec > 250

Black : all events 

Blue : small energy deposits (Multi-hit reduced sample)

Magenta : large energy deposits (Multi-hit enhanced sample)

Ratio of energy 
spectrum

Possibility of validation!! 

SIBYLL 2.3, 
 collisions107



Ratio of energy spectrum 
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Large tower, Region 1 (by reconstructed positions), 

,  GeV, passed software trigger L2D > 25. Erec > 250

Photon

Hadron

Reconstructed Energy [GeV]
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Ratio = (multi-hit reduced)/(nominal spectrum)

We found differences between data and MC predictions.
=> Template fitting using two free parameters for the normalization 
of contamination and multi-hit events 

Step 1) Get a multi-hit normalization factor  for the multi-hit 
corrections using the template fitting. 

Step 2) Apply the factor  and its error to the multi-hit predictions 
and get modified multi-hit corrections and its error. 


  (correction before tuning) 


 =>     (correction after tuning)


γ

γ

CMH =
NMH ideal + NSH

NMH obsreved + NSH

CMH =
γNMH ideal + NSH

γNMH obsreved + NSH



Template fitting 
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Minimizing the following value








Parameter  is fixed to 1.0 

∑
(Rdata − RMC)2

σRdata + σRMC

RMC =
αNsingle−photon

cut + βNsingle−hadron
cut + γNmultihit

cut

αNsingle−photon + βNsingle−hadron + γNmultihit

β

Ratio of multi-hit reduced to inclusive 
Large tower, Region 1 (by reconstructed positions), 
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Template fitting using EPOS-LHC
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Ratio of multi-hit reduced to inclusive 
Large tower, Region 1 and 2 (by reconstructed positions), 


,  GeV, passed software trigger L2D > 25. Erec > 250
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Apply data-driven factors
Multi-hit correction for 10 ≤ Ntrack < 16
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The data-driven factor was applied. 



Apply data-driven factors
Multi-hit correction after applying the data-driven normalization factor
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Apply data-driven factors
Multi-hit correction after applying the data-driven normalization factor
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Multi-hit corrections 
MC-driven correction factors with the data-driven normalization factor

• Multi-hit enhanced/reduced samples were selected using the first several layers of the LHCf detector 

• MC validation using Multi-hit reduced samples 


• The sum of energy deposits in the first 6 layers works well to reduce multi-hit events. 

• Validation of hadronic interaction models using the multi-hit reduced sample was performed.  

• Differences between data and MC. 


• Template fitting using two free parameters for normalization of single-photon contaminations and multi-hit 
contributions. 

• Note that single-photon contaminations is quite small. 


• The data-driven normalization factor for multi-hit contributions was applied to MC predictions.

• Then, we got MC-driven correction factors with the tuning of MC. 
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Unfolding 
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Two dimensional unfolding 
Extend the method for LHCf-Arm2 analysis 
• Strategy 


• Two dimensional unfolding using RooUnfold package

• Iterative baysan method 


• Extend the method for LHCf-Arm2 analysis 

• LHCf-Arm2 analysis : https://doi.org/10.1007/JHEP11(2018)073


• Two dimensional histograms for inputs/outputs


•  and  for input /  and  for output

• Response matrix 


• 1D response from ATLAS full simulation & 1D response from LHCf full simulation 

• Assumption : detector response of ATLAS and LHCf detector are independent 


• Update 

• Performance test of unfolding 

• Systematic uncertainty 

• Candidate of final plots 


• Remaining works 

• Systematic uncertainty due to unfolding

Erec Ntrack Etrue Ncharged
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https://doi.org/10.1007/JHEP11(2018)073
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MC sample  
ATLAS full simulation / LHCf full simulation 

Response Matrix  

Before  
unfolding 

Unfolded spectrum 

Update from the last report :  
Performance test of the unfolding method using the 
ATLAS-LHCf full MC. Then, the systematic uncertainty 
was estimated. 

Two dimensional unfolded spectrum 

Projection to each axis  
Ratio of spectrum after projection 
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Response matrix for ATLAS tracks  
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The number of iteration 
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 : the  between the outputs 
of two consecutive iterations 
Δχ2 χ2

 Iteration
0 2 4 6 8 10 12 14 16 18

2  χ 
∆ 

1

10

Region 1

the number of iteration :

 becomes less than 1Δχ2

the number of iteration depends on input 
spectrum and the response matrix.



Unfolding performance 
For the systematic uncertainty of the unfolding method

• Input MC sample 

• ATLAS-LHCf full MC, PYTHIA ND 


• Response matrix (using two 1D matrices)

• ATLAS full MC, PYTHIA ND 

• LHCf flat neutron sample 


• Calculate bias due to unfolding from the ratio of MC truth spectrum to unfolded spectrum. 
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Performance test result — Region 1
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The performance test result, after rebin
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Performance test result — Region2
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The performance test result, after rebin

Ratio = True / Unfolded

Large bias for 




Larger bias than Region 1
6 ≤ Ntrack < 10
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Systematic uncertainty 
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Unfolding performance 
For the systematic uncertainty of the unfolding method

• Input MC sample 

• ATLAS-LHCf full MC, PYTHIA ND 


• Response matrix (using two 1D matrices)

• ATLAS full MC, PYTHIA ND 

• LHCf flat neutron sample 


• Calculate bias due to unfolding from the ratio of MC truth spectrum to unfolded spectrum. 


• Large bias for  

• For the moment, we don’t know the clear reason of this large bias. 

• In the reconstructed spectrum, we use the fine binning for  to consider the migration correctly. 

• But it makes the number of events per bin small, and that may cause bias. 

• The wide binning in the reconstructed spectrum may cause another bias. 


• The response changes dramatically for . 

6 ≤ Ncharged < 10

Ntrack < 10

Ntrack < 10
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Final plots  
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Preliminary final results
Region 1 
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Summary and remaining works 
• Finally, we use the MC-driven corrections for multi-hit corrections but with the data-driven tuning of 

MC simulation.

• We implemented the two-dimensional unfolding. 


• The performance of the unfolding was confirmed by using ATLAS-LHCf common simulation 
samples instead of experimental data. 


• Propagations of systematic uncertainty before unfolding to unfolded spectrum were considered. 

• We plotted the final plots.

• Thanks to the correlation of systematic uncertainty, systematic uncertainty in the ratio plots were 

smaller than statistical errors. 

• Remaining works 


• Several minor updates of calculations 

• Validation of all procedures of analysis using ATLAS-LHCf common simulation instead of 

experimental data. 

• Analysis note


• Ken Ohashi, the main analyzer, leave the LHCf collaboration at the end of this month. 

• K. O. will contribute the documentation even after leaving the collaboration. 

• Working group members try to complete the analysis note as soon as possible. 
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Back up 
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Comments in the last soft QCD meetings
• Why the number of iteration is so large? 


• Energy resolution of LHCf detectors for hadrons was 40%, so to 
correct them, we need more than 10 iteration. 


• Why iteration was stopped at ? Can we see plateau in  plot? 

• For large number of iteration, change of results become smaller while 

the result become unstable; statistical errors of unfolded spectrum 
become very large. 


• Thus, in LHCf-Arm2 analysis, we stopped at  to balance the 
performance and statistical errors. 


• Result of performance test for 

• [TO DO] I will do it later. 

Δχ2 = 1 Δχ2

Δχ2 = 1

5 ≤ Ntrack < 140
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Comments related to fiducial volume / multi-hit

• Why you don’t show ? 


• We removed  due to difficulty in multihit correction. 


• For , we did unfolding but not shown since some contamination of diffraction may affect 
results. 


• [TO DO]  Solution : show 

• Another definition of energy spectrum to avoid uncertainty in multihit corrections


• For example, hadrons in Region 1 but with photon or hadrons in Large tower regions are not removed. 

• Solution : add one spectrum with definition including multihit events? 


• We need to consider new definition carefully. 

• [TO DO]  I will try to do it later. 


• Effects of multi-hit events (two or more particles in one small calorimeter tower.) 

• These events change the energy spectrum, because two or more particles were reconstructed as one particle. 

• How often? — ~10%. 


• Cross-check of multi-hit data-driven method 

• Comparison with MC-driven method  / Estimation using MC instead of data. 

• [TO DO]  I will report them in the next report or in the document.

Ntrack < 10
Ntrack = 0

2 ≤ Ntrack < 10

5 < Ntrack < 10
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Others 
• MC in final plots: why PYTHIA is not shown in the final plot


• Shown in the next pages

• Cross-check of LHCf trigger efficiency 


• Using MBTS or random trigger?? 

• For Run3, we can check using ATLAS-ZDC behind the LHCf detector. 

• No solution for the moment. 
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Validation of hadron-tungsten 
interactions
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Idea to validate MC predictions 
Using the longitudinal development

102

Photon

Hadron

• Validation of fractions of non-interacting hadrons 

• Parts of hadrons pass the detector without interactions. 

• Uncertainty in the inelastic cross-sections is one of the 

systematic uncertainty. 

• The inelastic cross-section can be validated using the shower 

start points of hadron events 

• Check the first layer with pass the software trigger.


• The distributions of the first layer roughly correspond to 
the start point of the hadronic shower. 


• Distributions of the first layer can be useful to validate inelastic 
cross-sections between hadrons and tungstens. 

Position sensitive layers before layer 2/5/8

=> energy deposits in layer 2,5,8 were affected. 

(Larger gaps between tungsten and scintillator.)



Validation of hadron-W interactions
Using the number of events in deeper layers 

• For each event, 

• Check the layers passed the software trigger

• Pick-up the first layer in the passed layers. 


• If the first layer is small, contamination of multi-hit and 
photon events is expected. 


• If we focus on the events that started after the 7th 
layer, we can check the shower start points for single 
hadron or hadron+hadron multi-hit events. 


• Position-sensitive layers are installed before the 3rd, 
6th, and 9th layers and between tungsten plates for 
deeper layers. 

• Energy deposit in the 3rd, 6th, and 9th layers 

were affected by position-sensitive layers right 
before the scintillator. 
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Shower start points as a function of the effective tungsten depth

• Event selection 

• Reconstructed hit in Region 0 

• Passed software trigger

• 


• The effective number of events started in the tungsten plates 
between layers.


• Remove the layers with the position-sensitive layers just 
before the scintillation plate. 


• Fit 

• From 8th layer to 14th layer

• 

• Fit results of 


• Data: 8.59 +/- 1.02

• QGSJET: 8.03 +/- 0.91

• EPOSLHC: 8.02 +/- 0.92

• SIBYLL: 8.14 +/- 0.93


• Ratio of Data to MC

• QGSJET       1.07 +/- 0.18

• EPOSLHC    1.07 +/- 0.18

• SIBYLL         1.06 +/- 0.17 

L2D > 25

N = a exp(−x /Λ)
Λ
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Summary of validation of hadron-W interactions
Using the shower start points

• Parts of hadrons pass the detector without interactions. Uncertainty in the inelastic cross-sections is one of the 
systematic uncertainty. 


• The inelastic cross-section can be validated using the shower start points of hadron events 

• If we focus on the events that started after the 7th layer, we can check the shower start points for single 

hadron or hadron+hadron multi-hit events.

• The first layer in layers passed the software trigger is roughly correlated with the shower start points. 

• The number of events of the first layer was calculated with effective tungsten depth. 

• The distributions were fitted  from the 8th layer. 


• The exponential slope  was consistent between data and MC, but the statistical errors of data were large. 

• But this is the only possibility of the validation for the moment. 

N = a exp(−x /Λ)
Λ

105



Analysis
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Correction factor 
Particle ID 
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Data + MC (fitting)

Multi-hit MC driven -> Data-driven 

Photon 

Neutron  Neutron  

Photon 

Correction was calculated using two simulation: 

Photons 

Hadrons 

Simulation (observed) Simulation (ideal)
Compare two 
energy spectra

Multi-hit 
correction factor

Purity and efficiency 
of PID event selection 

PID correction factor

Template fitting of 
experimental data 

Parameter of the depth of 
the shower developments. 

PID threshold

L2D

Blue:

HadronRed:


Photon PID correction for 

Regio A,  = 0Ntrack

Reconstructed energy [GeV]
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Correction factor 
Position migration, fake/miss 
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MC driven

Position migration
Migration due to the position resolution

Position resolution;  100 µm for > 3TeV 

Fake correction 
Fake events due to 250 GeV energy cut and 
energy resolution. 

Miss correction (apply after unfolding) 
Events without interactions in the detector. 
(LHCf detector: 1.6 interaction length,  
 ~ 20-30% events are without interactions 
at high energy)  
And miss events due to energy threshold cut 

Three analysis region 

 [GeV]recE
0 2000 4000 6000 8000 10000 12000 14000 16000

C
or

re
ct

io
n 

fa
ct

or

0.95
0.96
0.97
0.98
0.99

1
1.01
1.02
1.03
1.04
1.05

 [GeV]recE
0 2000 4000 6000 8000 10000 12000 14000

C
or

re
ct

io
n 

fa
ct

or

0.95
0.96
0.97
0.98
0.99

1
1.01
1.02
1.03
1.04
1.05

 [GeV]recE
0 2000 4000 6000 8000 10000 12000

C
or

re
ct

io
n 

fa
ct

or

0.95
0.96
0.97
0.98
0.99

1
1.01
1.02
1.03
1.04
1.05

Position migration correction for 

Region A,  = 0Ntrack

Miss correction for 

Regio A,  = 0NtrackReconstructed energy [GeV]

True energy [GeV]



Correction factor 
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Decay in beam pipe 

ATLAS inner tracker related background correction inner tracker correction 

MC driven
K0, lambda decay 
Not applied yet. It is better to show neutral hadrons at 140 m from the interaction point.

Background Correction
Beam pipe background. Detector

Gas in beam pipe

Beam gas 
background

Estimated using non-colliding bunch 

MC driven

Data driven

=> Corrected in unfolding. 



Correction of effects in beam pipe 
Apply corrections for kaon and lambda? 

110

IP Magnets / Decay Detector

~140 m from IP
Several possibilities :  
a) Neutrons and antineutrons at IP (used in published LHCf results) 

• Corrections of contaminations and decay 
b) Neutral kaon, lambda, neutron, and their antiparticles at IP  

• Corrections of decay 
c) Neutral hadrons at 140 m from IP — adopted in this analysis.  

• Small correction  
• In the LHCf simulation, contamination of charged pions at 2-3TeV was simulated. 
• We are checking the simulation. 



Data-driven method
Correction should be >0, but smaller than 0 for some case… 
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Uncertainty due to 
conversion factor

At the highest energy bin, the number of multi-hit events estimated from 
two-tower events is larger than spectrum (single-hit + multi-hit).  

Region 1, 8.99 < η < 9.21 Region 2, 8.81 < η < 8.99

Black : average 

Magenta : EPOS-LHC

Blue : QGSJET II-04

Green : SIBYLL 2.3

Correction factor, three cases using different conversion factor (color lines) and average (black line)

(100-102*1.17 + 2*3.86)/100CMH
i =

NNcharged≥2
data,i − Aobserved

conversion,iNtwotower,sum
data,i + Aideal

conversion,iNtwotower
data,i

NNcharged≥2
data,i

Corr = 0



Motivation 2 : for cosmic-ray physics 
Better understanding of forward neutron productions 

• Understandings of very forward particles are very important for 
cosmic-ray physics. 


• SIBYLL 2.3 (green line) looks better than EPOS-LHC (magenta 
line) and QGSJET II-04 (blue line). 

• But MPI mechanism which explained in the previous page 

affects this spectrum. 

• Diffractive dissociation also affects this spectrum. 

• In ATLAS-LHCf joint analysis, we can compare energy 

spectrum with the number of charged particles in 
. 


• In this analysis we focus on , where contributions of 
diffractive dissociation are negligible. 

|η | < 2.5
Ncharged ≥ 10
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LHCf neutron spectrum  
(JHEP 2007 (2020) 016) 

http://dx.doi.org/10.1007/JHEP07(2020)016


Recent paper by ALICE-ZDC 
Similar study was performed by ALICE-ZDC (arXiv : arXiv:2107.10757 ) 

• Using ALICE-ZDC, they show correlation between 
multiplicity in  and forward signals. 

• Neutron modules of the ALICE-ZDC cover 

. 

• Proton modules cover . 


• They do not convert signals to energy, but normalize 
signals by the mean of signals with minimum-bias 
measurements. 


• Differences between models are caused by MPI 
mechanism. 


• Advantage of ATLAS-LHCf measurements

• We can measure forward neutron energy, so we can 

compare energy spectrum with selections by 
multiplicity. 

|η | < 1

|η | > 8.8
6.5 < |η | < 7.4

113

ALICE results, arXiv:2107.10757 / 
CERN-EP-2021-144 

Ratio of mean of the number of charged 
particles to minimum-bias measurements 
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http://arxiv.org/abs/arXiv:2107.10757

