Measurement and analysis of the A_N for forward neutron production at RHICf LHCf Collaboration Meeting

Oct 16 Minho Kim

Transverse single-spin asymmetry (A_N)

- In the polarized p+p collision, the A_N is defined by a left-right cross section asymmetry of a specific particle or event.
- The RHICf experiment measured the A_N of the forward neutron produced in $\eta > 6$ and $p_T < 1$ GeV/c.
- A_N of the forward particle is especially important to study the particle production mechanism in the regime where the pQCD is not applicable.

A_N for forward neutron production

Non-zero A_N for forward neutron production was first observed by the IP12 experiment at RHIC. Y. Fukao et al., PLB 650 (2007) 325

- Afterwards, the PHENIX measured the neutron A_N as a function of p_T with three different collision energies.
- The measurement results showed a possible p_T dependence of the neutron A_N .

Theoretical model

Neutron A_N was explained by an interference between the spin flip and spin non-flip exchange leading to non-zero phase shift.

The π and a_1 exchange model showed that the neutron A_N increased in magnitude with increasing p_T with little \sqrt{s} dependence.

Unfolded neutron A_N at PHENIX

PHENIX, PRD 105 (2022) 032004

- Recently, p_T dependence of the PHENIX neutron A_N at $\sqrt{s} = 200$ GeV was obtained by unfolding the data.
- The unfolded data showed the same tendency with the model calculations.

Neutron A_N measurement at RHICf

- RHICf experiment has extended the previous measurements up to 1 GeV/c to study the kinematic dependence of the neutron A_N in more detail.
- We used a detector with one order of better position resolution (1 cm \rightarrow 1 mm).
- We can also study the \sqrt{s} dependence of the neutron A_N by comparing the RHICf data with that of PHENIX.

RHICf experiment

STAR detector

Analysis flow

Neutron photon separation

• An event was considered as a neutron if $L_{90\%}$ > $aL_{20\%}$ + b X₀.

- Among "a" and "b" values that made the neutron purity higher than 99%, they were optimized so that (purity) x (efficiency) had a maximum value.
- The optimized "a" and "b" are 0.15 and 21, respectively, thereby the L_{2D} was defined as L_{90%} 0.15L_{20%}.

Photon background subtraction

To estimate and subtract the photon contamination, a template fit was performed to the L_{2D} distribution.

- To study effect of the discrepancy between the MC and data, the template fit was performed again using the template of the higher x_F bin.
- A_N difference after unfolding between the two methods was negligible, which was less than 0.0007. → No systematic uncertainty was assigned.

Reproduction of the front counter response

To fit the front counter ADC distribution, EM events were enhanced.

The ADC distribution was fitted by assigning free parameters to MIP mean, MIP sigma, and number of events of n x MIP distributions.

Charged background subtraction

To estimate and subtract the charged contamination, another template fit was performed to the front counter ADC distribution.

- According to QGSJET II-04, less than 5% of the charged hadron event has photon.
 Photon and charged contaminations were subtracted separately.
- There is almost no difference in the resulting A_N ($\langle 0.0004 \rangle$) even if only one contamination was subtracted. \rightarrow No systematic uncertainty was assigned.

Unfolding

13/20

Results

- Systematic uncertainties of unfolding and beam center calculation processes were included in the final data points.
- In the low x_F range, the neutron A_N reaches a plateau at low p_T .
- In the high x_F range, the A_N doesn't seem to reach the plateau yet, but we can confirm that the A_N explicitly increases in magnitude with p_T .

Results

- Systematic uncertainties of unfolding and beam center calculation processes were included in the final data points.
- In the low p_T range, the A_N reaches a plateau at low x_F with little x_F dependence.
- In the high p_T range, the A_N reaches a higher plateau at higher x_F with a clear x_F dependence.

Comparison with the PHENIX data

- The RHICf results are consistent with of those of PHENIX in general.
- In the range of $x_F > 0.4$ and $p_T < 0.2$ GeV/c, the consistency suggests that there is no \sqrt{s} dependence in the neutron A_N .

Comparison with the theoretical calculation

- In the high x_F range, the A_N s are mostly consistent with the model calculation.
- However, the model doesn't reproduce the A_N s in the low x_F ranges because of the x_F dependence.
- More comprehensive theoretical considerations, e.g., the absorptive correction and other Reggeon exchanges like ρ and a₂, are necessary to explain the present results.

Next target: A reconstruction

- A neutron at ZDC acceptance and two photons at RHICf detector showed a clear \land peak \rightarrow We expect that we can reconstruct \land with ZDC or RHICf only.
- Feasibility of the ∧ reconstruction (the lowest photon energy, opening angle, and so on) is now under way.

Improvement of the L_{2D} template fit

- To study a possible improvement of the template fit, a flat photon distribution was generated assuming it was real data as a test.
- Since energy distributions of MC and data are not completely the same, the L_{2D} distributions are also not.
- If we scale the lower and higher energy parts separately, we can better reproduce the true L2D distribution

Improvement of the L_{2D} template fit

- When the lower and higher energy distributions are scaled separately, it also better reproduces the original energy distribution.
- The whole energy spectrum will also be compared.