Prospects of LHCf/ATLAS and RHICf/STAR

LHCf Neutron at pp 13 TeV

Joint operation data set

LHCf + ATLAS

□ Op 2015: pp √s = 13 TeV

- Only 6 M events of common events
- No ZDC and RPs jointed the operation

□ Op 2022: pp √s = 13.6 TeV

- Huge statistics of 300 M common events (all LHCf trigger events)
- RPs (AFP and ALFA) and ZDC-HAD jointed the operation

RHICf + STAR

□ Op 2017: pp $\sqrt{s} = 0.5$ TeV

- RHICf was installed in the front of ZDC
- RPs jointed in the last fill

Physics cases for joint operation

- with Central Detector
 - Measurement of diffractive collisions
 - Properties of Multi-parton interaction
- with Roman Pots
 - Single diffractive measurement
 - \Box Measurement of N(1440) and Δ (1232)
- with ZDC
 - Improvement of energy resolution for neutrons to $\sim 20\%$
 - \square Measurement of Λ ($\Lambda \rightarrow n + \pi^0$)
 - One-Pion-Exchange process

Joint operation with RPs

Physics cases

- Single diffractive measurement
 - Measuring the scattered proton, the diffractive mass can be estimated event-by-event.
 - Can address the hadron production from a specific mass decay. cross-section = (diffractive mass spectrum) x (hadron production)
- \Box Resonance measurement : N(1440) and $\Delta(1232)$
 - N : probe the very low mass diffractive process.

ATLAS AFP and ALFA

- ALFA : optimized for high- β^* operation
- AFP : designed for operation in nominal pp runs
- Both the detectors were operated during the 2022 operation
- \rightarrow Feasibility study of LHCf + ATLAS RPs was done by an ATLAS PhD. student.

Acceptance of RPs

Study the acceptance for protons using the MC simulation

HUMBOLDT-UNIVERSITÄT ZU BERLIN

Acceptance for single-diffractive process

LHCf+AFP

event rate [Hz]	# events (2 d)
46.5 ± 1.3	8.0 ± 0.3 million

scattered proton in AFP + Any particle with > 200 GeV in LHCf

Large statistics events can be expected

Acceptance for N and A resonances

scattered proton in AFP pi0 in LHCf

These event numbers are estimated assuming 100% DAQ efficiency

 \rightarrow Statistics may be limited In addition, the combinatorial background may be a problem for this analysis.

Other topics (pp \rightarrow p π^0 X)

We can study the diffractive $p\pi^0$ channel using Roman pot.

- It was once studied for forward π^0 at STAR and a similar study is currently being proceeded with the diffractive EM jet analysis.
- It will also be interesting if we study the $p\pi^0$ channel with the very forward π^0 production.

Quick study of RHICf + STAR RPs by Minho

8/10

Physics case with ZDC

- Improvement of energy resolution for neutro
- $\Box \leftrightarrow LHCf/RHICf$ alone : ~40%, (~30% with event s
- General improvement of neutron diff. cross-section
- Measurement of Λ
 - \Box A can be a good probe of strange baryon production
 - Detection : $\Lambda \rightarrow n + \pi^0$
- One-Pion-Exchange measurement to study the $p-\pi$ interaction

р

Performance study using SPS

- Joint beam test of LHCf Arm1 + ZDC was performed in 2021.
- Kondo-san confirmed the improvement of resolution to < 20%</p> \rightarrow Kobayashi-san will present a study of the uniformity.

correlation SPS2021 proton 350GeV TS

Quick analysis of LHC data

Operation in 2022 reconstructed neutron energy

Backup

N(1440) 1/2⁺

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 $\begin{array}{l} \mbox{Re(pole position)} = 1360 \ \mbox{to} \ 1380 \ (\approx 1370) \ \mbox{MeV} \\ -2\mbox{Im(pole position)} = 160 \ \mbox{to} \ 190 \ (\approx 175) \ \mbox{MeV} \\ \mbox{Breit-Wigner mass} = 1410 \ \mbox{to} \ 1470 \ (\approx 1440) \ \mbox{MeV} \\ \mbox{Breit-Wigner full width} = 250 \ \mbox{to} \ 450 \ (\approx 350) \ \mbox{MeV} \end{array}$

N(1440) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$N\pi$	55–75 %	398
$N\eta$	<1 %	ť
$N\pi\pi$	17–50 %	347
$arDelta(1232)\pi$, <i>P</i> -wave	6–27 %	147
$N\sigma$	11–23 %	—
$p\gamma$, helicity ${=}1/2$	0.035–0.048 %	414
$n\gamma$, helicity= $1/2$	0.02–0.04 %	413

Δ(1232) 3/2⁺

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$

Re(pole position) = 1209 to 1211 (\approx 1210) MeV -2Im(pole position) = 98 to 102 (\approx 100) MeV Breit-Wigner mass (mixed charges) = 1230 to 1234 (\approx 1232) MeV Breit-Wigner full width (mixed charges) = 114 to 120 (\approx 117) MeV

Δ(1232) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$N\pi$	99.4 %	229
$N\gamma$	0.55-0.65 %	259
$N\gamma$, helicity ${=}1/2$	0.11-0.13 %	259
$N\gamma$, helicity $=3/2$	0.44–0.52 %	259
<i>p e</i> ⁺ <i>e</i> ⁻	$(4.2\pm0.7) imes10^{-5}$	259

