

K⁰ kinematics and their rough reconstruction

Oscar Adriani

Nagoya, October 16, 2023

The simple idea in few steps (I)

- I decided to do this simple study essentially to learn Python!!!!!
 - Please, it is useful to cross-check my results....
- Generate single monoenergetic K_{s}^{0} , in the forward direction (θ =0) with Pythia (under Python)
 - τ=0.8954.10⁻¹⁰ s
 - cτ=2.7 cm
 - $\gamma\beta$ ct=54 m for 1 TeV K⁰
- Allow them to decay at a certain z_{vertex}
- Select π⁰ π⁰ decays (Br=30.7%) (final state with γγγγ, produced at the same point, since π⁰ lifetime is very short!)
- Pre-select events with:
 - Decay vertex < 140 m
 - 4γ reaching the TAN region in a 20 cm radius circle
- Save data in a file

The kinematics

The simple idea in few steps(II)

- Extrapolate the 4 γ to the LHCf z coordinate (140 m)
- Find their intersection with the small and large towers
- Select events with 4 γ hitting the towers, with some minimum distance between them
 - Interesting kinematics is selected, see later!
- Smear their energies and x-y impact points
- Try to reconstruct the 2 π^0 (and then the K⁰) with some simple fitting procedure, only from the hits on the towers

And now some more details....

- 500 GeV, 1 TeV, 2.5 TeV, 5 TeV, 7.5 TeV K⁰ energies
 - 1 TeV is the 'reference energy'
 - All the plots are for this energy

Z coordinate of the decay vertex

gamma z vertex

What happens if we simply assume that the γ s are produced at the IP (z=0)?

• A nightmare!!!!!! The $\gamma\gamma$ invariant mass is completely wrong, and correlated to the vertex position (on preselected only events)

Let's find the 'golden' events (4 γ on the LHCf towers)

- Few events @1 TeV
- Most of the events are concentrated on the small tower
- 4 γ in ST, 0 g in LT
- Very few events have:
- 3 γ in ST, 1 g in LT

Smearing

- A gaussian smearing on x, y, energy for each γ is applied
 - 10% energy smearing
 - 0.5 mm impact point smearing
 - Other values are used later for cross checks

Here some statistics (with 5 mm minimum distance btw γ s)

Energy (GeV)	Generated K0	4S, OL	3S, 1L	2S, 2L	1S,3L	0S, 4L	Golden events	Golden/generated	
500	1361000	555	32	0	0	0	157	0.012%	
1000	471000	2550	148	1	0	0	661	0.140%	
2500	532000	13620	692	3	0	0	3646	0.685%	
5000	830000	35866	1568	5	0	0	9440	1.137%	
7500	1143000	57114	1242	2	0	0	12663	1.108%	
Golden=4 gammas in the 2 towers acceptance, with >5mm minimum distance btw 2 gammas									

Distance btw 2 γ on the towers (5 mm cut is applied)

Event topology vs Z_{vertex} in LHCf

Number of hits in small tower for golden events vs zVertex

- Essentially all the 'golden events' correspond to decays in the last 20—30 meters
- Remember that a proper z_{vertex} reconstruction is necessary to reconstruct π⁰ and K⁰!!!

The z_{vertex} fit procedure (I)

- Starting point: 4 γ s on LHCf
- The reconstructed invariant masses depend on the z_{vertex}
- Construct a 'sort of χ^2 ' and minimize it to find the best z_{vertex}
- Since we have 4 γ we should pair them in the proper way to identify the pairs coming from the same π^0
- Since the 4 γ are produced in the same vertex, the 2 correct reconstructed invariant masses should be identical (identically wrong...)
- Pair identification: the 2 pairs that produce the 2 more similar invariant masses

The z_{vertex} fit procedure (II)

- Once we have the best 2 pairs \rightarrow minimize χ^2
- $\chi^2 = (\text{Invmass1-m}(\pi^0))^2 + (\text{Invmass2-m}(\pi^0))^2$
- It is not a real χ^2 , it can be largely improved!!!!!
- χ^2 is function of the $z_{vertex} \rightarrow minimization$ procedure to find the

- If we know the z_{vertex} , we can compute the correct invariant masses, since we know the γ correct 4-vectors (we know their energies)!
- We can do this first for $\gamma\gamma$, then for $\pi^0\pi^0$

π^0 invariant mass

- Please note: I am using info coming only from LHCf hits!
- 10% energy smearing
- 0.5 mm position smearing

K⁰ invariant mass

Effect of the smearing

Effect of the smearing

Effect of the smearing

Open points and possible improvements

- Only "on axis" K⁰ have been generated → should we expect some effects from small angles generation?
- The function to be minimized can be largely improved (using of a Likelihood is certainly better than this wrong χ^2 !)
- Possible improvements in the γ pair selection mechanism \rightarrow Iterative mechanism?
- Since in the golden events γ are generated quite close to LHCf, we can try to reconstruct the angle wrt the beam line directly from the LHCf information (from the first two x-y layers) → a simple check could be done from this simple simulation

Conclusions

- I started this simple study essentially to learn Pyhton....
 - Since it was interesting, I went a little bit more inside
- Essential points:
 - Only K⁰ decaying in the last 20-30 meters can be identified
 - Most of the events produce 4 hits in the small tower \rightarrow impossible to really reconstruct?
 - Some events produce 3 hits in the ST and 1 hit in the LT \rightarrow Possible????
 - The z_{vertex} position should be determined by an optimal fitting procedure to properly reconstruct the invariant masses
- Clearly a real LHCf simulation should be done !!!!
 - How many golden K⁰ can we expect from the data, given an integrated luminosity? I have no idea!!!!
 - It is feasible to reconstruct at least 3 γ in the small tower? With which energy and position resolution?
 - If this would not be possible, and we should rely on the 2ST/2LT topology, the statistics will be largely decreased (But I have no idea of the luminosity!!!!)