
CORAL Database Copy Tools

By
Gitika Khare
RRCAT, Indore, India

Objective

Several experiment applications are based on LCG
database abstraction layer CORAL for accessing relational
data from several supported back-ends (Oracle, MySql,
SQLite).

To simplify deployment of CORAL based applications, a
set of associated tools are required to allow copying of
individual tables or complete schemas between existing
databases and technologies.

2

CoralTools

The CoralTools package provides a set of export tools for the
CORAL framework.

The mapping between data types of source and destination
schema follows the CORAL mapping rules.

This would allow the CORAL based applications to run
unchanged against data copies in a different database
backend.

The tools support schema and data copy between the
following relational databases – Oracle, MySQL and SQLite.

The CoralTools package is developed in Python and is an
implementation of the PyCoral interface developed using the
python/C API.

3

schemautils Python Package

The following set of CoralTools have been developed for the
CORAL framework:

listobjects(schema)
Returns list of tables ordered by hierarchy

dumpobjectlist(schema)
Dumps the list of tables (and views) grouped and ordered by
hierarchy, specifying the existing constraints and indexes.

copyschema()
Copies the schema objects from source to destination, without
to copy data

copydata()
Copies the schema objects from source to destination,
including data

4

schemautils Python Package

copytableschema(tablename)
Copies the specified tableschema. No data copy.

copytabledata(tablename, selectionclause,
selectionparameters)
Copies the specified tableschema, including data

copytablelistschema(tablelist)
Copies the specified list of tables ordered by hierarchy. No
data copy.

copytablelistdata(tablelist)
Copies the specified list of tables ordered by hierarchy,
including data.
tablelist is the list of tables with selectionclause and
selectionparameters

5

Implementation Details
Resolution of Table Hierarchies

Export of a tree of hierarchically related objects from source to
specified database required the knowledge of table
dependency trees.

A Python class is developed for providing schema object
relationship information.

The relational dependency class provides an implementation
for building table dependency trees for a specific table and an
entire schema. It scans all the tables in the schema to
construct the dependencies between the tables.

Circular dependency between the tables is not handled since
it requires special treatment.

This class is used for the implementation of CoralTools.

6

Implementation Details

Scalability

The tools are targeted to copy of big volumes of data.

Implementation uses bulk operations on both reading and
writing side, taking care to balance the data transfer from
the source to the destination (minimize the roundtrips),
and the memory required on the client side for caching.

For copying of data buffer protocol is used, which allows
reading and writing of data into a buffer without additional
memory requirement.

7

Use Case 1

1. Export of all the objects from a specified schema from a
source database into a specified database ordered by
hierarchy.

Source schema objects in destination database do not exist .

1.1 Schema only, no data
1.2 Schema + data

8

Use Case 2
2. Export of a tree of hierarchically related objects from a source database

into a specified database. For the specified list of tables, the export
considers ordering of tables by:

a) all the upper level tables which are referenced by foreign key constraints.
b) all of dependent tables (referencing columns of this table by foreign key

constraint)
c) The export also considers data selection on the specified table columns.

2.1 Tables and related objects (constraints, indexes) do not exist in the
destination database. The required tables and related objects are
consistently created.

2.2 Tables and related objects exist , possibly with data . The existing set of
tables involved is checked. The export is successful if no primary key
violations are found during the new data insertion.

9

CoralTools Usage (initialization)

//Initialize Connection Service
svc = coral.ConnectionService()

//open session proxy for source schema providing logical service name & access mode
session1 = svc.connect(‘write_test', accessMode = coral.access_ReadOnly)
transaction1 = session1.transaction()

//open session proxy for destination schema providing logical service name& accessmode
session2 = svc.connect(‘coral_test', accessMode = coral.access_Update)
transaction2 = session2.transaction()

sourceSchema=session1.nominalSchema()
destSchema=session2.nominalSchema()
exp=exporter(sourceSchema,destSchema)

10

UseCase 1 (schema+data)

copydata()

transaction1.start(True)
transaction2.start()
try:

exp.copydata()
transaction2.commit()
print "Data copied"

except Exception, e:
transaction2.rollback()
print "Test Failed"
print str(e)

transaction1.commit()

11

UseCase 2 (schema+data)

copytabledata(tablename, selectionclause, selectionparameters)

transaction1.start(True)
transaction2.start()
try:

tablename = "T1"
selectionclause= "id > :idmin and id < :idmax"
selectionparameters = coral.AttributeList()
selectionparameters.extend("idmin","int")
selectionparameters.extend("idmax","int")
selectionparameters["idmin"].setData(1)
selectionparameters["idmax"].setData(10)
exp.copytabledata(tablename,selectionclause,selectionparameters)
transaction2.commit()
print "Data copied"

except Exception, e:
transaction2.rollback()
print "Test Failed"
print str(e)

transaction1.commit()
12

UseCase 2 (schema only)

copytablelistschema(tablelist)

transaction1.start(True)
transaction2.start()
try:

tablelist = ['T3','T1','T2']
exp.copytablelistschema(tablelist)
transaction2.commit()
print "Tables created"

except Exception, e:
transaction2.rollback()
print "Test Failed" print str(e)

transaction1.commit()

13

UseCase 2 (schema+data)
copytablelistdata(tablelist)

transaction1.start(True)
transaction2.start()
try:

table1 = "T3"
selectionclause1= "id >= 0 and id<10"

table2 = "T2"
selectionclause2= "id >= :idmin and id < :idmax"
selectionparameters2 = coral.AttributeList()
selectionparameters2.extend("idmin","int")
selectionparameters2.extend("idmax","int")
selectionparameters2["idmin"].setData(0)
selectionparameters2["idmax"].setData(25)

table3 = "T1"

14

UseCase 2 (schema+data)

tablelist = [[table1,selectionclause1],
[table2,selectionclause2,selectionparameters2],
[table3]]

exp.copytablelistdata(tablelist)
transaction2.commit()
print "Data copied"

except Exception, e:
transaction2.rollback()
print "Test Failed"
print str(e)

transaction1.commit()

15

Exception Handling

Circular dependency exists between the tables.

Tables exists in destination schema.

Unique constraint violated - (if data exists in the table)

table or view does not exist - (Upper level table referenced by
foreign key constraint does not exist in destination schema)

Integrity constraint for foreign key violated – (data not found
in upper level table which are referenced by foreign key
constraint)

16

Status

The CoralTools have been developed and tested using the
test cases with Oracle, MySQL and SQLite.

The tools for both UseCase 1 & UseCase 2 have been
tested with a case with POOL-ORA application with Oracle,
SQLite and MySQL database.

Documentation has been prepared in compliance with the
CORAL doc framework.

Testing for Scalability, Performance analysis and
Optimization is in progress.

The tools have to be tested with a case with COOL
application.

17

