

UNIVERSITY OF LATVIA Institute of Chemical Physics

MED-015 Sc radionuclide extraction and mass-separation at MEDICIS

Edgars Mamis, Patrīcija Kalniņa, Rūdolfs Jānis Zabolockis

SY-STI-RBS

06/12/2023

Structure

- 1. Target development
- 2. Sc release studies
- 3. Molecular beams
- 4. Mass-seaparation results from experiments
- 5. Conclusions and outlook

Ti and V foil Target material development

≻ Target temperature cap 1550 °C (Ti), 1800 °C (V) and 2900 °C (TiC),

> Embosed rolls to reduce sinthering and help reduce readsorption

≻Titanium foils

> 1st try – Double rolls: 74.8 g

> 2nd try – Double rolls: 96.3 g

≻Vanadium foils

> 1st try – heavily oxidized V foil: 44.8 g

> 2nd try – std. V foils: 61.7 g

➤ 3rd try – higher purity V foils: 34.4 g

> Macrometric TiC

SY

>1st try – TiC pellets: 14.7 g

Sc thermal release studies from activated foils

Samples were placed on a tantalum boat to avoid sample melting/sticking in target container

CR-147358

CR-1473

"OT

°OT

"Ø

ninim & Jainging

Preliminary release results

- Sc from Ti rolls in Ta environment is fully released at 1200-1500 °C within an hour.
- Sc is released from V foil rolls fully at 1600 oC within an hour and there is no release at 1400 °C.
- 27 consecutive sample handlings with RP

- Sc radionuclide production by neutron activation of nat-Ti corresponds well to Actiwiz code developed by CERN RP
- Embossing rolls shift the release to higher temperatures

CERN

SY

Accelerator Systems

(STI)∸

Sc⁺ and ScF_x⁺ molecular beams at ISOLDE

- Sc extraction from irradiated ^{nat}Ti rolls as molecular halide beams was previously reported with W surface ion source at ISOLDE (1991);
 - Sc⁺ and ScF⁺ beams were observed, but no ScF₂⁺ molecular ions alongside evaporation of Ti target
- <u>Note:</u> Ti^+ beam current rose from 0.1 to 5 μ A when fluorinating gas was added (Ti ionization efficiency is up to 1 % with surface source);

Intact (left) and molten (right) Ti roll target material.

Production yields of Sc⁺ and ScF⁺ ions from a 40 g/cm2 Ti foil target with a W surface ionizer. Irradiation 600 MeV protons. R. Eder, et al. The production yields of radioactive ion-beams from fluorinated targets at the ISOLDE on-line mass separator, *Nuclear Instruments and Methods in Physics Research B62 (1992) 535-540, North-Holland*

ScF_x⁺ sidebands (F saturated environment CF₄) ScF₃⁺ / ScF₂⁺ / ScF⁺ / Sc⁺ : 0 / 10 / 1 / 1

Fig. 19. V ScFx+ ion species current ratio in the total beam from target unit £731

Onset of release

Nr.	Target Nr.	Target material	lon source	Max operated target T, oC	Sc radionuclides collected	Appearance temperature of target	Species monitored
1	723M	Titanium foil, double layer (embossed)	VD-5	1600	44Sc, 47Sc 47Ca	1200 1100	44mSc+ 47ScF2+
2	741M	Titanium foil, double layer (embossed)	VD-5	1600	44Sc, 46Sc, 47Sc	1550* 1400 1180	44gScF2+ 46ScF2+ 47ScF2+
3	766M	V foil (embossed, oxidized)	VD-5	1850	47Sc	1650	47ScF2+
4	790M	V foil (embossed)	VD-5	1700	47Sc 47Ca	1500 -1650	47ScF2+, 47ScCl+
5	801M	Externally irradiated Ca-43	VD-5	2000	43Sc, 44Sc	1550 оС ???	43ScF2+ 44ScF2+
6	805M	V foil (embossed, >98% purity)	VD-5	1750	44Sc, 47Sc	1540 (hottest part - line) #2: ~1500 (hottest part - line)	44ScF2+ 47ScF2+
7	805M	V foil (embossed, >98% purity)	Laser	1750	-	1570 (at the coldest part) 1700 (hottest part)	44-47Sc+
8	702M	TiC (1-2 um)	VD-5	2000	47Sc 46Sc	1525	47ScF2+ 47ScF+ 46ScF2+

^{44m,44g}Sc and ⁴⁷Sc collection from Ti

- > ScF, molecular beams are suppressed by TiF, isobars;
- > Identified 511 positron strong keV (from annihilation) line in on-line gamma spectroscopy
- > Collected Sc-44 radionuclide activity in range of few kBq;
- > Ca-47 extraction as Sc-47 generator without reactive gas

Kromek γ -spectra during ⁴⁴ScF₂⁺ collection at **MEDICIS (target 741M)**

Mass scan fragments from medical Sc extraction by different fluorinating gases at same operation conditions, identifying strong TiF_x beams

Nuclide Name	Half Life	Conf.	Energy (keV)		Yield(%)	Activity (Bq/units)
Ca-47	4.54 d	1 0.99	489.23 807.86 1297.09	* *	6.20 6.20 71.00	1.62E+04 1.69E+04 1.46E+04
Sc-47	3.35 d	0.99	159.38	*	68.30	8.78E+03

Gamma spectroscopy results for Ca-47 collection from nat-Ti target

SY

UNIVERSITY OF LATVIA Institute of **Chemical Physics**

V foils target - molecular

Collection 09.2023

 The collection onset was with cold container (but hot middle part where the line is attached ~1540 °C) Successful separation from long lived ⁴⁶Sc and ⁴⁸Sc contaminants was achieved

Collection 10.2023:

- Collected of foil
 - ~300 kBq of Sc-44m *Eff.* = 0.20 %
 - ~ 780 kBq of Sc-47. *Eff.* = 0.18 %

Laser ionization efficency of elemental ⁴⁵Sc⁺

Stable beam tests 26-30.06.2023

- W and Re surface source
- Sc_2O_3 in 0.1M HNO₃
 - W source: 600 nAh Enhancement factor ~96x
 - Re source: 11800 nAh and enhancement factor of 193.5x
- Efficiency: 0.06% (from 11 800 nAh)

Radioactive beams from V foils

- No fluorinating gas added.
- When molecules were formed no laser enhancent ever observed.
- Laser ionisation dissapeared in 1 day full release?

11

SY Accelerator Systems

TiC

SY

Accelerator Systems

CÉRN

- Onset of release 4x consistent 1550 °C
- Collected of foil 09-10.2023

(STI)

- MS-032 = 3.4Bq (02.10) and MS-034 = 860 kBq (09.10) of Sc-47. *Total eff.* = 0.62 %
- MS-032 was collected without CF4, MS-034 with CF4. Both correspond to 12 MBq at End of Irradiation
 Collection on MS-034

TiC continued ⁴⁶**ScF**₂⁺ **molecular beam extraction**

- Target was not irradiated again continuation of previous collection
- Additional fluorination
- Collected 2.2 MBq 02.11.2023 = ~2% efficiency
- Total efficiency = 2.6 % from half charge TiC target
- Target unit still operational

External ^{43/44}ScCl₃ sample (PSI)

- ScCl₃ · 6H₂0 upon heating above 60 °C starts to lose water and above 275 °C begins to decompose rapidly forming Sc₂O₃
- > No activity collected of fluoride sideband.
- Sample was released from target container at temperatures of 1500-1760 °C either as elemental or different molecule other than ScF₂⁺.
 - Possibly Sc(II)O or ScCl_x (x=1-2)

40

Radiochemical separation

Optimized radiochemical separation from Zn and AI coating with ion exchange

Sc Ca T

- Semi-automated setup reduced exposure
- Electrochemical deposition tested and still ongoing
- Radiochemical Yield > 98%, Recovery >95 %
- First chemical (stable) samples shipped to Riga, Latvia for analysis
- Most thanks to R.J. Zabolockis and P. Kalniņa

CÉRN

UNIVERSITY OF LATVIA

Chemical Physics

Institute of

Special thanks of P. Kalnina and R.J. Zabolockis

0

0

200

400

Time, s

600

0.37

800

Conclusion and outlook

- Sc radionuclides can be produced and mass-separated in sufficienct quantities to be shipped back to Latvia.
- High radiochemical purity.

- Improove on sputtering and beam purity.
- More radiochemical processing is studied in Riga, Latvia
- Ship first radioactive samples to Latvia

UNIVERSITY OF LATVIA Institute of Chemical Physics

Special thanks to Thierry Stora, Charlotte Duchemin, Patricija Kalnina, Rudolfs Janis Zabolockis Laura Lambert, Ralf Rossel, Cyril Bernerd, Jake Johnson, Sebastian Rothe and everyone from SY-STI-RBS and RP

home.cern