CMS Trigger and DAQ upgrades for Run-3

D. Rabady (CERN), on behalf of the CMS collaboration EP Detector Seminar 3 May 2024

Level-1 trigger system design

- Muon trigger combining all three muon detectors
 - Regional track-finders
 - Global sorting and cancel-out layer also extrapolates coordinates back to interaction region
- Two-layer calorimeter trigger
 - Tower-level calibrations
 - Pileup subtraction
 - Independent calibrations for jets, taus, e/gamma
- Global Trigger with 512 possible algorithms
 - Single, multi- and cross-object
 - Topological information

Level-1 trigger system improvements

- Dedicated algorithms for long-lived particle searches
- Improved pile-up mitigation
- Integration of GEM and ZDC detectors
- Demonstrating data scouting at the bunch crossing frequency

Displaced muons for Run-3

- Barrel:
 - Profit from Phase-2 developed Kalman filter-based algorithm implemented using high-level synthesis (HLS) in firmware
 - \circ Applying KF without constraint to beamspot allows to compute impact parameter and p_{T} of displaced track ("unconstrained p_{T} ")
 - Endcap:

 Simplified Phase-2 NN used to assign impact parameter and p_T without beamspot constraint

Overlap:

- Naive Bayes classifier estimates the p_T of prompt muons based on a set of precomputed patterns
- $\circ \quad \mbox{For displaced tracks, the same approach is used, but track extrapolation using} \\ \mbox{bending angle from DT reference chambers is compared to measured location in} \\ \mbox{order to obtain } p_{\rm T} \mbox{without beamspot constraint} \\ \end{tabular}$

Showers in the muon detectors

- Muon detector showers are a powerful tool for LLP searches
 - Probing new LLP parameter space: long lifetimes and low masses
 - Decay after calorimeters causes showers in muon detectors
 - Traditionally triggering for these signatures using missing energy, but low efficiency
- Implementation:
 - Use spare bandwidth from cathode strip chambers to endcap muon track finders (EMTF) to transmit few bits to indicate when chambers detect more than a certain number of local charged tracks (LCTs)
 - EMTF and Global Muon Trigger apply logic to create
 - Single shower trigger with high threshold
 - Triggers on any LLP energetic enough to create shower in CSCs
 - Two showers in different sectors trigger with lower thresholds
 - Use to trigger on pair produced LLPs

Long-lived particles in the calorimeters

- HCAL transmits depth and timing information to trigger
 - Six bits available in HCAL \rightarrow Calorimeter Layer-1 trigger link
 - Used to flag signals characteristic of exotic long-lived particle decays
 - TDC timing used to mark hits with late arrival times
 - Shower profile used to mark decays within HCAL volume
 - \circ Only one bit available on Calorimeter Layer-1 \rightarrow Layer-2 link
 - Can use timing & shower profile to create single "LLP flag"
- Can select hadronic signatures from LLPs with decay lengths of 1–2 m which decay prior to or within HCAL
 - \circ ~ Require two trigger towers with LLP flag set in jet algorithm

D. Rabady (CERN)

40 MHz data scouting system

- Use objects reconstructed by L1 trigger to do physics
 - Semi real-time analysis and/or storing of tiny event record
 - Enables study of exotic signatures that cannot be fit into the trigger budget
 - Targeted at Phase-2
 - Demonstrator taking data now
- L1 scouting system included in CMS runs regularly
 - Data taken so far primarily used for data quality monitoring
 - Pre-firing, bunch-to-bunch correlations, luminosity monitoring etc.
 - First online analyses currently under commissioning

The data acquisition systen

The data acquisition systen

Event building in Run-2

- Event fragments \rightarrow Readout units
 - Receiver units build super fragments
- All super fragments for a given event \rightarrow Builder unit
- Drawback: unidirectional use of network links

Folded event building in Run-3

- Readout and builder unit appliances housed in the same physical machine
- Allows bi-directional use of network links
 - Reduction of almost 50% of RU/BU nodes and network bandwidth
- Drawback: significant demand on I/O and memory performance of individual nodes
 - Required to receive and merge event fragments, exchange super fragments, build and serve events, pass HLT output to storage and transfer service

Event building tuning and performance

- Selected AMD EPYC Rome single socket CPUs to host RU/BU appliances
 - \circ ~ Only mild tuning needed when run in single NUMA domain mode
 - Groups of threads running similar tasks pinned to same or adjacent cores and closer to corresponding network interface PCIe lanes

- Performance evaluated and deemed to be capable of fulfilling the Run-3 requirements
 - Measurements taken with 50 RU/BU nodes and shown to allow event building at 100 kHz up to event sizes of 2.5 MB

• HLT decoupled from central DAQ via file system

- Builder unit application writes events in custom binary format to ramdisk that is exported via NFS
- Files are distributed to HLT processes running on filter units (FUs) assigned to a particular builder unit
- HLT is implemented in offline analysis framework (CMSSW)
 - Allows to reuse data structures, unified use of conditions, and faster deployment of algorithms
- Since beginning of Run-2 CMSSW uses task-based multi-threaded event processing
 - Reduced memory footprint due to sharing of detector conditions and calibrations within a process
 - Allowed to exploit all logical CPU cores

Filter units with accelerator support

- For Run-3 support for offloading to accelerators was added
 - \circ $\,$ GPUs in HLT reduce average event processing time by 40% $\,$
 - Cost of the filter farm could be reduced by 15%, power consumption by 30% vs. farm without GPUs
 - Using Alpaka abstraction library to allow vendor-agnostic development of algorithms
- Run-3 filter farm implemented with AMD EPYC Milan dual socket machines with two Nvidia T4 GPUs
 - CMSSW processes split into two groups with each group pinned to one single-socket NUMA domain as well as to GPU that is attached to PCIe lanes of associated socket

HLT Run-3 algorithm improvements

- Tracking
 - For **Run-2:** three/four iterations of a combinatorial Kalman filter
 - **Run-3:** Single global iteration, seeded by loose selection of pixel tracks reconstructed by parallelised algorithm developed for use in GPUs
 - Fewer iterations and less CPU time than Run-2 algorithm, but better performance
- Tau lepton reconstruction in two steps
 - First pass reconstruction and isolation criterion computed using a CNN with pixel tracks and calorimeter candidates as input
 - Full reconstruction improved vs. Run 2 using Deep Tau NN
 - For 2024 will be moving to ParticleNet
- B jet tagging
 - Improved light flavour jet misidentification rates vs. Run 2 (DeepCSV) by using two new NN-based jet taggers, DeepJet and ParticleNet

HLT Run-3 triggers

- Special paths for long-lived particles
 - Displaced jets, displaced leptons and photons, and delayed jets
 - Using timing information from ECAL and HCAL, as well as HCAL depth information
 - Partly seeded by newly developed L1 seeds
 - Three new high-multiplicity trigger (HMT) paths that target hadronic showers in the muon system
 - 2x seeded by L1 HMT paths, reconstructing clusters in the CSC or in the CSC and DT systems
 - 1x seeded by L1 MET, reconstructing cluster in the DT system
- Data scouting
 - \circ Stores only the most relevant physics information, as reconstructed by the HLT
 - Significantly smaller event sizes: 11 kB vs. 1 MB for standard events
 - For Run 3 pixel tracks from parallelised algorithm used to directly seed particle flow reconstruction
 - Since 2024 running full HLT reconstruction for scouting stream
 - In addition to muons, jets, particle flow candidates stored during Run 2, also electrons, photons, and tracks are now stored for Run 3

- Level-1 trigger introduced significant improvements for LLP searches
 - Displaced muons, displaced/delayed jets, muon detector showers
- Demonstrator for scouting at the bunch crossing frequency has begun data taking
 - Currently commissioning the online analysis feature
- Using more efficient event building architecture
 - Bi-directional use of links reduced event builder size by almost 50%
- GPU-accelerated filter farm reduces average HLT event processing time by 40%
 - Efforts made to avoid vendor lock-in