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CMS triggers in two stages
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Level-1 trigger system design

HO HBHE HF ECAL
TPs TPs TPs RS

® Muon trigger combining all three muon

detectors

o Regional track-finders

0 Global sorting and cancel-out layer also

extrapolates coordinates back to interaction e
region TwinMux Cf:}ll-(r]iz;n:rler
® 'Two-layer calorimeter trigger v —'_,a ]
o  Tower-level calibrations [ E;gccip ] °¥,Z’éi" ?;ﬂ gxﬁ
o DPileup subtraction led - . led — S
o Independent calibrations for jets, taus, e/gamma G[;Ld j:
® Global Trigger with 512 possible algorithms e -
o Single, multi- and cross-object
o Topological information lobal Trigger
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Level-1 trigger system improvements
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® Dedicated algorithrns for long—lived G
) S
particle searches u
® Improved pile-up mitigation
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Trigger
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e Integration of GEM and ZDC detectors
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® Demonstrating data scouting at the bunch [ e ] e (T (o)
Track Track Track Calorimeter
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Displaced muons for Run-3

Prelimina C 2023
e Barrel: s
o Profit from Phase-2 developed Kalman filter-based algorithm implemented using ~ * i T 1
0.8 3 LX vl 1
high-level synthesis (HLS) in firmware i e J

o) Applymg KF without constraint to beamspot allows to compute impact parameter

and p... of displaced track ("unconstrained p.." 04 by
T T i

L +
L #,

. Endcap: 02 4. Constrained p +§+ +
L + Unconstrained p &5

o  Simplified Phase-2 NN used to assign impact parameter oottt

0 10 20 30 40 50 60 70 T%gckgj[c%?o

and P without beamspot constraint

e Overlap:
o Naive Bayes classifier estimates the p.. of prompt muons based on a set of
precomputed patterns
o For displaced tracks, the same approach is used, but track extrapolation using
bending angle from DT reference chambers is compared to measured location in

order to obtain P without beamspot constraint
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Showers in the muon detectors

CMS
® Muon detector showers are a powerful tool for LLP searches - é

o  Probing new LLP parameter space: long lifetimes and low masses

m  Decay after calorimeters causes showers in muon detectors

o Traditionally triggering for these signatures using missing energy,

but low efficiency

e Implementation:
o Use spare bandwidth from cathode strip chambers to endcap muon track B
finders (EMTF) to transmit few bits to indicate when chambers detect
more than a certain number of local charged tracks (LCTs)
o EMTTF and Global Muon Trigger apply logic to create
m  Single shower trigger with high threshold
e  Triggers on any LLP energetic enough to create shower in CSCs
m  Two showers in different sectors trigger with lower thresholds

®  Use to trigger on pair produced LLPs
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Long-lived particles in the calorimeters

e HCAL transmits depth and timing information to trigger 1w 1
197 T
o Six bits available in HCAL — Calorimeter Layer-1 trigger link -
0 Used to flag signals characteristic of exotic long-lived particle decays 2
24
m  TDC timing used to mark hits with late arrival times 2
27|
m  Shower profile used to mark decays within HCAL volume 2]
o Only one bit available on Calorimeter Layer-1 — Layer-2 link 57M AL Endeap
m  Can use timing & shower profile to create single "LLP flag”
e Can select hadronic signatures from LLPs with decay HCAL Barrel 3m
5 JE]
lengths of 1-2 m which decay prior to or within HCAL 1
o Require two trigger towers with LLP flag set in jet algorithm % iy | g
24T M
2T ]
17 2 5
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40 MHz data scouting system

® Use objects reconstructed by L1 trigger to do physics Run-8DS o wetiamrmcrons

—@_ 100 Gb/s RoCE

O Semi real-time analysis and/or storing of tiny event record

SCX55 —14- USC55
'

o Enables study of exotic signatures that cannot be fit into the

trigger budget
m  Targeted at Phase-2

m  Demonstrator taking data now

® L1 scouting system included in CMS runs regularly

0 Data taken so far primarily used for data quality

pp PP PP P

Level-1 trigger scouting 2024
T T T

monitoring " | . .
. . . . g 10 CMS Private A
m  Pre-firing, bunch-to-bunch correlations, luminosity £ L Fnastn
fe)) Run 379416
monitoring etc. <
ERLYS E
o  First online analyses currently under commissioning 2
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Event building in Run-2

® FEvent fragments — Readout units

o Receiver units build super fragments

o Al super fragments fora given event — Builder unit

° unidirectional use of network links
Readout Unit Event building network Builder Unit High Level Trigger
and storage
Detector back-end e > > network
765 1
L1
Readout Unit Builder Unit
o e
KB ' =
[2]
Readout Unit ' 3 Builder Unit
2 (3]
2 Readout Unit i Builder Unit
Detector back-end | ' # 4 =
‘ 12 ]
FE]
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Folded event building in Run-3

l;eumoeurl lf:: Event building network
e Readout and builder unit appliances housed in the
same physical machine e |
Builder Unit \
e Allows bi-directional use of network links e, 1A
o  Reduction of almost 50% of RU/BU nodes and network \ ) ::><::
bandwidth Readoutand | [ )
° significant demand on I/O and memory B
performance of individual nodes
Readout and \
0 Required to receive and merge event fragments, exchange super R \
fragments, build and serve events, pass HLT output to storage >
and transfer service

High Level Trigger
and storage
network
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Event building tuning and performance

DIE DIE

® Selected AMD EPYC Rome single socket CPUs to host CCX_cex ﬁ ﬁ
RU/BU appliances Ealiicy

i il
0 Only mild tuning needed when run in single NUMA domain mode [} H]
m  Groups of threads running similar tasks pinned to same or I m
adjacent cores and closer to corresponding network interface [ H
PCle lanes - - - -
CCX  ccx CCX  cox
DIE DIE
_ 400EMS
N E Event builder rate with traffic generated in EVB
= 350" 4 1 EVM + 49 RUs + 50 BUs
® DPerformance evaluated and deemed to be capable of fulfilling £ - 209 kizomina
. = ’
the Run-3 requirements £ 2507
0  Measurements taken with S0 RU/BU nodes and shown to allow event g 200¢
150F
building at 100 kHz up to event sizes of 2.5 MB ook
o)

e e b e b

500 1000 1500 2000 2500
Event size [kB]
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The CMS file-based filter farm

e HEIT decoupled from central DAQ via file system

O Builder unit application writes events in custom binary format to ramdisk that is exported via NFS

o Files are distributed to HLT processes running on filter units (FUs) assigned to a particular builder unit

e HLT is implemented in offline analysis framework (CMSSW)

o Allows to reuse data structures, unified use of conditions, and faster deployment of algorithms

e Since beginning of Run-2 CMSSW uses task-based multi-threaded event processing

o Reduced memory footprint due to sharing of detector conditions and calibrations within a process

o Allowed to exploit all logical CPU cores
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Filter units with accelerator support

® Tor Run-3 support for offloading to accelerators was added
o GPUsin HLT reduce average event processing time by 40%

m  Costof the filter farm could be reduced by 15%, power 690.1ms

consumption by 30% vs. farm without GPUs

o  Using Alpaka abstraction library to allow vendor-agnostic

development of algorithms

e Run-3 filter farm implemented with AMD

Configuration of an AMD Rome Node

EPYC Milan dual socket machines with two it il et
Nvidia T4 GPUs =TSko & ik Y
il e = R, = i
o CMSSW processes split into two groups with each 2552 2L oo  Sem— 33
. . . ) 5 2| sustained 63.5=72 GB/s per direction 5
group pinned to one single-socket NUMA domain 2252 = =8

, =T oo E ] | | BT =
as well as to GPU that is attached to PCle lanes of e oo coffe e o/  mrEEbO

associated socket 3200 Mz 3200 Mk

204.8 G?/S @ 16 GT/s @ 16 GT/s 204.8 G?/S

read/write 31.5GB/s 31.5GB/s read/write

half-duplex per direction per direction half-duplex

256 GB 16x 16x 256 GB
DDR4 Memory connect connect DDR4 Memory
tolB

tolB
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HLT Run-3 algorithm improvements

D. Rabady (CERN)

> 1""|""1""|""|"|'1:‘:rp7v
. o CcMms it events (PU) ~ 63
o TraCklng _E) Simulation pr> 0.9GeV, 1] <3.0 |
'S 08 o
o  For Run-2: three/four iterations of a combinatorial Kalman filter = W e o o P
o Run-3: Single global iteration, seeded by loose selection of pixel tracks =g i SR
i~ . R S L M e
reconstructed by parallelised algorithm developed for use in GPUs 3 5ud Lon .
. . . . = .
m  Fewer iterations and less CPU time than Run-2 algorithm, but better - ]
performance I o2} *  Run 3 HLT Tracking "
. . e *  Run 2 HLT Tracking
e Taulepton reconstruction in two steps s o s ficn v o e Lo s ¥ g vl
4 2 =« 06 1 2 3
o First pass reconstruction and isolation criterion computed usinga CNN Simulated Track n
with pixel tracks and calorimeter candidates as input T T . e
. . . c [ cms ]
o Full reconstruction improved vs. Run 2 using DeepTau NN S| Simaton Prfminary P 7
5:‘::’ |~ DeepCSV onine F
m  For 2024 will be moving to ParticleNet §E e P
. . g E DeePJet oﬂ‘line. / E
. B ]et tagglng B, } PamcleNetoffhne/
g1 el B
o Improved light flavour jet misidentification rates vs. Run 2 (DeepCSV) by £ ; L= e

using two new NN-based jet taggers, DeepJet and ParticleNet

EP Detector Seminar — 3 May 2024

o

104\ 1l L1l 1111 L1l 111l 1111 L1l I 111 L1l
05 055 06 065 07 075 08 085 09 095 1

&

b jet identification efficiency

16



HLI Run-3 triggers

® Special paths for long-lived particles
o Displaced jets, displaced leptons and photons, and delayed jets
m  Using timing information from ECAL and HCAL, as well as HCAL depth information
m  DPartly seeded by newly developed L1 seeds
0 Three new high-multiplicity trigger (HMT) paths that target hadronic showers in the muon system
m  2xsceded by L1 HMT paths, reconstructing clusters in the CSC or in the CSC and DT systems
m  Ixseeded by L1 MET, reconstructing cluster in the DT system

® Datascouting
o Stores only the most relevant physics information, as reconstructed by the HLT
m  Significantly smaller event sizes: 11 kB vs. 1 MB for standard events
o For Run 3 pixel tracks from parallelised algorithm used to directly seed particle flow reconstruction
m  Since 2024 running full HLT reconstruction for scouting stream
o Inaddition to muons, jets, particle flow candidates stored during Run 2, also electrons, photons, and tracks

are now stored for Run 3
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Summary

® Level-1 trigger introduced significant improvements for LLP searches
o Displaced muons, displaced/delayed jets, muon detector showers

® Demonstrator for scouting at the bunch crossing frequency has begun data taking
o Currently commissioning the online analysis feature

e Using more efficient event building architecture
o Bi-directional use of links reduced event builder size by almost 50%

® GPU-accelerated filter farm reduces average HLI' event processing time by 40%

o  Efforts made to avoid vendor lock-in
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