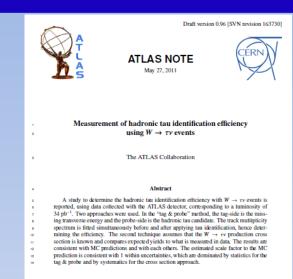
Measurement of hadronic tau identification efficiency using W →τν events

Group approval meeting 1st June,2011

Y. Coadou, <u>K. Hanawa</u>, K. Hara, S. Lai, K. Nakamura, S. Protopopescu and S. Tsuno on behalf of the tau performance group

Introduction

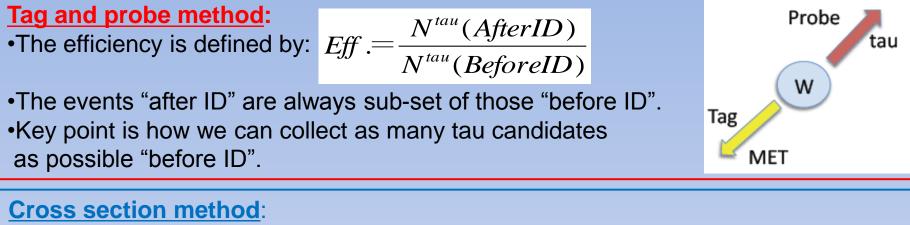

•This note describes "Measurement of hadronic tau identification efficiency using $W \rightarrow \tau v$ ".

-CONF draft : ATLAS-COM-CONF-2011-085 http://cdsweb.cern.ch/record/1349546 -Supporting COM draft : ATL-COM-PHYS-2011-476 http://cdsweb.cern.ch/record/1349543

•There are two methods to evaluate tau identification efficiency and scale factor (SF) :

- □Tag and Probe method.
- □Cross section method.
- •This note shows the result of tau ID SF in six ID working point.

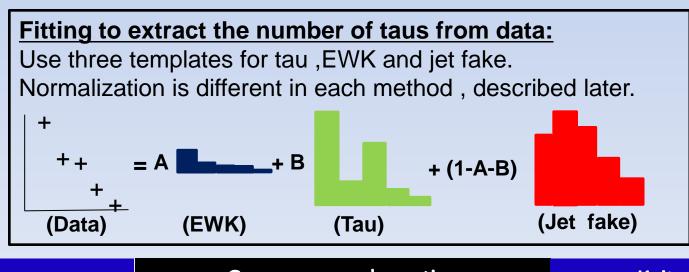
	1-prong	Multi-prong
Looser(CUT/LLH)	Loose	Medium
Tighter(CUT/LLH)	Medium	Tight
Looser(BDT)	Loose	Loose
Tighter(BDT)	Medium	Medium


To be submitted to ATLAS CONF note

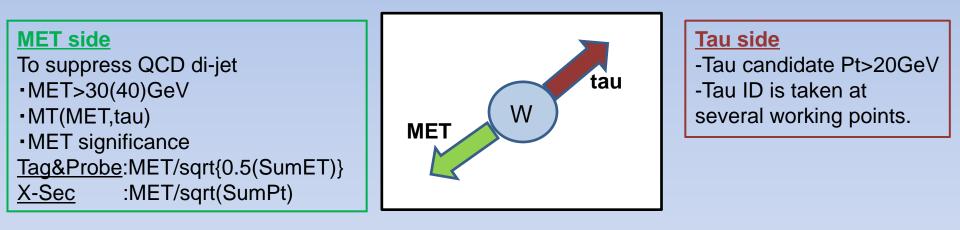
Typical efficiency from MC				
Method	e-veto	Efficiency		
Looser cuts	medium	0.74		
Tighter cuts	tight	0.57		
Looser LLH	medium	0.80		
Tighter LLH	tight	0.63		
Looser BDT	medium	0.74		
Tighter BDT	tight	0.60		

1st June ,2011

Group approval meeting


Description of each method

•Assume the W production cross section (from data, lepton universality) to compare the MC acceptance with DATA. $SF = \frac{N^{tau}(Data)}{N^{tau}(MC)}$


•The deviation is quoted as the "Scale Factor".

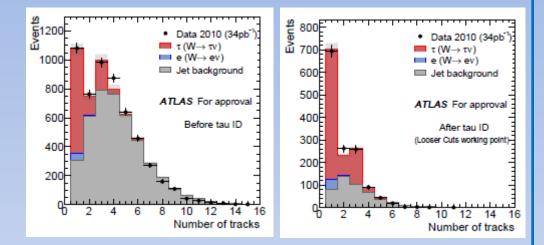
•The key point is how we can control the "Acceptance".

Event selection

Trigger	Lepton veto
To avoid trigger bias	-To reduce W→e/mu v
Missing Et Trigger	•veto events if they have at lease one lepton(e
Tag&Probe: all MET trigger	with Pt>20GeV/mu with Pt>15GeV)
X-Sec : EF_xe30(40)_noMu(un-prescaled).	

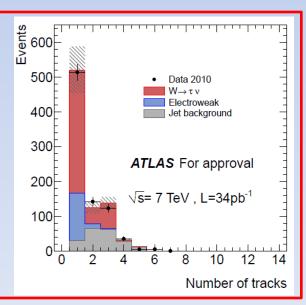
Remaining background after these selections:

•W→enu •jet (from W+jets /QCD di-jets)


Fitting method to determine efficiency/SF

- Number of tau in both methods are extracted by fitting the track multiplicity .

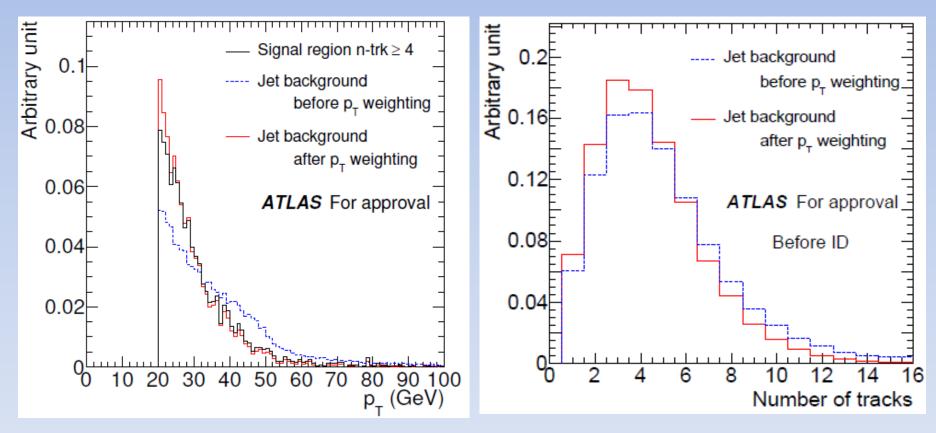
Tag & probe method :


- •Fit twice "before" and "after" ID to obtain N_{tau} (after/beforeID).
- -Two parameter fitting using $\mathbf{f}_{\text{signal}}$ and $\mathbf{f}_{\text{electron}}$

•Statistical error is dominated by the contribution of QCD "before ID".

Cross section method :

Fit just one time "after" ID to obtain N_{tau} after ID.
One parameter fitting using f_{signal}, where normalization for EWK is MC prediction.
Statistical error will be smaller than T&P method, while suffer from systematic uncertainty on acceptance determination.

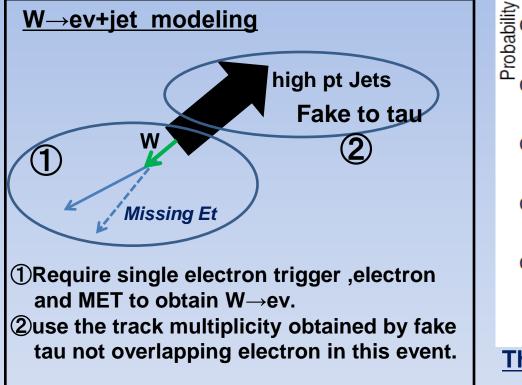


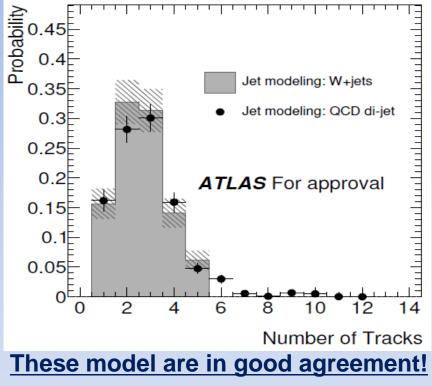
1st June ,2011

Group approval meeting

Jet background template for Tag&Probe

- •Jet background template for Tag&Probe is created by the shape in low MET significance region. (2< MET significance <4.5)
- •The shape is reweighted by pt spectrum to correct the pt difference between CR and SR.




Jet background template for Cross section

•Two models of jet background for cross check.

1.extracted from $W \rightarrow ev$ +jets events (for centeral value),

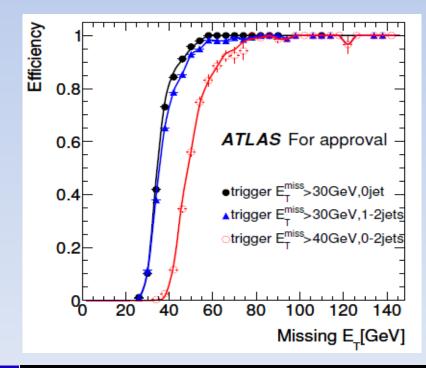
selected by single lepton trigger and same selection as SR.

2.One is similar to Tag&Probe ,pt reweighting (for systematics).

CR : data in low Mt region and

SR : fake tau of MC in signal region.

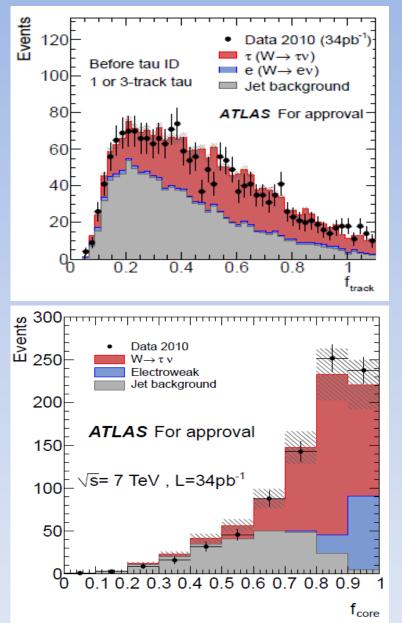
1st June ,2011

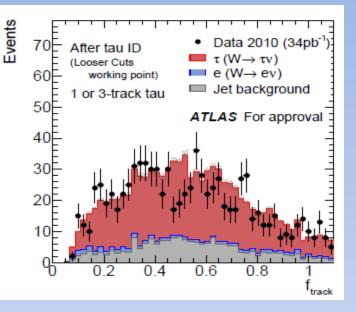

Trigger efficiency for cross section method

Event weight is applied as a weight to the $W \rightarrow \tau v$ MC instead of trigger simulation.

EventWeight =
$$data(W \to ev) \frac{MC(W \to \tau v)}{MC(W \to ev)}^{2}$$

(1)Trigger efficiency is extracted from $W \rightarrow ev$ event.

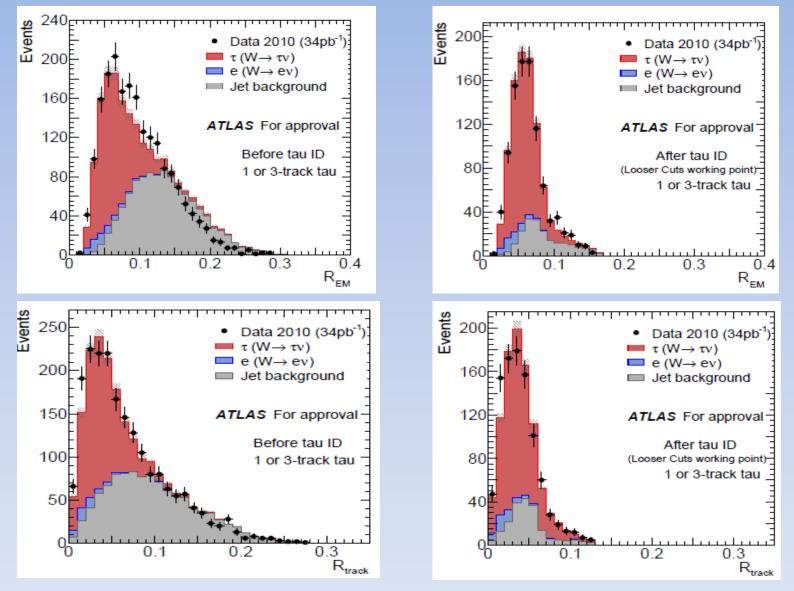

(2)To consider difference between $W \rightarrow \tau v$ and $W \rightarrow ev$, we apply correction with the ratio of the efficiency in $W \rightarrow ev$ and $W \rightarrow \tau v$ MC samples.



1st June ,2011

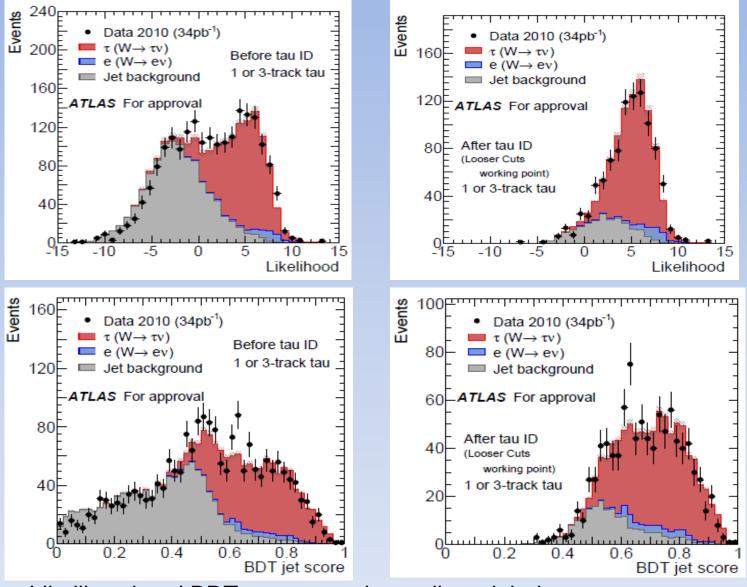
Group approval meeting

Verification for full model



Identification variables are well modeled
The different contributions are normalized to their respective number of events as measured by the fit.

1st June ,2011


Group approval meeting

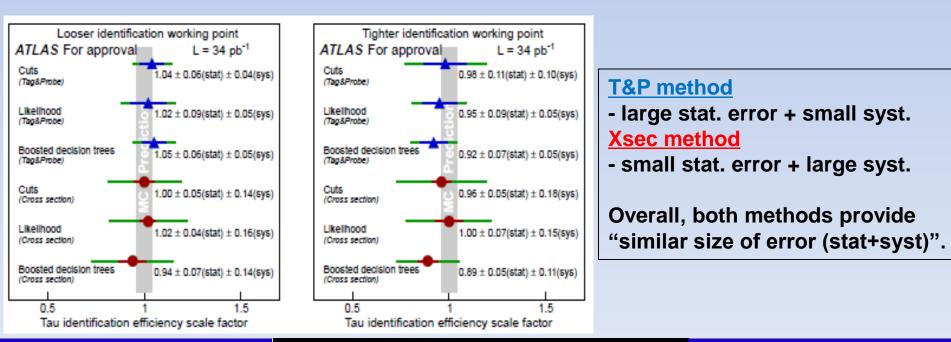
Other variables

Identification variables are well modeled .

LLH and BDT score

Likelihood and BDT score are also well modeled.

Systematic uncertainties


- The difference in the fit results with nominal fit is taken as a systematic uncertainty.

Jet modelling ($p_{\rm T}$ -weighting)0.4Jet modelling ($S_{E_{\rm T}^{\rm miss}}$)0.6Electron fake rate1.6Pileup condition1.4Shower model2.6	7% 4% 6% 6% 4% 6% 9%
Underlying event 1.	3% 7%
W cross section5.Trigger efficiency2.Electron fake rate4.Tau energy scale9.Jet energy scale0.Electron energy scale0.Electron energy scale0.Pileup0.Underlying event6.	.1% .1% .7% .8% .0% .1% .8% .2% .8% .8%
	Jet modelling $(p_T$ -weighting)0.Jet modelling $(S_{E_T^{miss}})$ 0.Electron fake rate1.Pileup condition1.Shower model2.Detector geometry0.Underlying event1.Total systematic uncertainty3.Jet modelling1W cross section5.Trigger efficiency2Electron fake rate4Tau energy scale9Jet energy scale0Electron energy scale0Pileup0Underlying event6

Results

Tag&Probe			
Method	Syst.	Efficiency	Scale factor
Looser cuts	3.7%	$0.77 \pm 0.05 \pm 0.03$	$1.04 \pm 0.06 \pm 0.04$
Tighter cuts	9.9%	$0.56 \pm 0.06 \pm 0.06$	$0.98 \pm 0.11 \pm 0.10$
Looser LLH	5.0%	$0.82 \pm 0.07 \pm 0.04$	$1.02 \pm 0.09 \pm 0.05$
Tighter LLH	5.7%	$0.60 \pm 0.06 \pm 0.03$	$0.95 \pm 0.09 \pm 0.05$
Looser BDT	4.4%	$0.78 \pm 0.05 \pm 0.03$	$1.05 \pm 0.06 \pm 0.05$
Tighter BDT	5.1%	$0.55 \pm 0.04 \pm 0.03$	$0.92 \pm 0.07 \pm 0.05$

Cross sectio	n	
Method		Scale factor
Looser cuts	1.($00 \pm 0.05 \pm 0.14$
Tighter cuts	0.9	$96 \pm 0.05 \pm 0.18$
Looser LLH	1.($02 \pm 0.04 \pm 0.16$
Tighter LLH	1.($00 \pm 0.07 \pm 0.15$
Looser BDT	0.9	$94 \pm 0.07 \pm 0.14$
Tighter BDT	0.8	$89 \pm 0.05 \pm 0.11$

1st June ,2011

Group approval meeting

Main questions during reviews

Q:Why is the systematic uncertainty of CUT tighter larger than other working points in Tag&Probe method ?

A:cut-based ID more sensitive to shifts in single variable data-MC comparisons. See R_{EM} on page 10.

Q:Why is the systematics of X-sec method larger than Tag&Probe one ? A:Because of Tau energy scale uncertainty, this uncertainty is cancelled in Tag&Probe method.

Q:How about JES for Tag&Probe ? A: It was expected to cancel in the ratio. Verified it: the effect is tiny ,the difference is 0.06 %.

Q:Why is the SF central value scatter so small compared to the uncertainties ? A:Because all working points and methods are correlated strongly due to using same variables for TauID.

More questions

Q:Why is the ratio 1 track to 3track large in X-sec method ? A:1tracks increase while 3tracks decrease after track-based met significance because we favor small sumPt.

Q:Why do we use track-based met significance ? A: To avoid large variation of SumEt.

Q: Isn't the mT selection (tau candidate leading to mT closest to 65 GeV) in T&P biasing your sample?

A: No, because the tau template is using only truth matched candidates.

Q:Size of tau energy scale uncertainty A:known to be overestimated, but only documented one until last week. \rightarrow could we apply the new tau energy scale ?

Conclusion

•We have completed the analysis of hadronic tau identification efficiency on 2010 data.

- •We obtained that the TauID SF is almost equal to 1.
- •We can believe TauID efficiency and MC prediction.
- •This is first measurement of TauID efficiency with ATLAS.
- •We have had EdBoard meeting .
- •We have addressed all questions from the EdBoard so far.

Back up

1st June ,2011

Group approval meeting

Event selection detail

Both methods are required similar selection.

- \rightarrow MET, Mt and METsignificance (to suppress QCD di-jet)
- \rightarrow Lepton veto (to suppress W \rightarrow Iv)

•But there is some difference due to the difference of each methods.

Tag & probe method :

$E_{\rm T}^{\rm miss}$ trigger	Use all $E_{\rm T}^{\rm miss}$ triggers, irrespective of prescales	Different point
Event cleaning	Good data quality and at least one primary vertex with ≥ 4 tracks	\rightarrow Since the efficiency is defined as the
$E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss} > 30 {\rm ~GeV}$	sub-set of events "after ID", there should
$\Delta \phi(E_{\rm T}^{\rm miss}, {\rm jet})$	$\Delta \phi(E_{\rm T}^{\rm miss}, {\rm jet}) \ge 0.7$	not cause any bias in the event selection
e/μ veto	Reject electrons with $p_{\rm T} > 20$ GeV and muons with $p_{\rm T} > 15$ GeV	(relative acceptance)
$E_{\rm T}^{\rm miss}$ significance	$S_{E_{\tau}^{\text{miss}}} \ge 6 \text{ GeV}^{1/2}$	•Use multiple MET triggers without
Tau candidate	$p_{\rm T} > 20$ GeV, leading track $p_{\rm T} > 2.4$ GeV, $m_{\rm T}$ closest to 65 GeV	caring the prescale factors.
Transverse mass	$m_{\rm T} \le 80 { m ~GeV}$	5 1

Cross section method :

Event cleaning	Good data quality and	at least one primary	vertex with > 4 tracks	Different point
e/μ veto		Good data quality and at least one primary vertex with ≥ 4 tracks Reject electrons with $p_T > 20$ GeV and muons with $p_T > 15$ GeV		
	$(p_{\rm T} > 20 \text{ GeV}, \eta < 1.3 \text{ or } 1.6 < \eta < 2.5,$			variation in the
Tau candidate	Exactly one candidate (keep smallest $m_{\rm T}$ if necessary)			(need to estim
$E_{\rm T}^{\rm miss}$ trigger	$E_{\rm T}^{\rm miss} > 30 {\rm GeV}$		$E_{\rm T}^{\rm miss} > 40 { m GeV}$	•Use un-presc
$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss} > 30 {\rm ~GeV}$		$E_{\rm T}^{\rm miss} > 40 { m GeV}$	is divided by
Jet multiplicity	0	1 or 2	0-2	•The event sel
$\Delta \phi(E_{\rm T}^{\rm miss}, {\rm jet})$		$\Delta \phi \ge 0.5$	$\Delta \phi \ge 0.5$	optimized by
$E_{\rm T}^{\rm miss}$ significance	$S_{E_{\mathrm{T}}^{\mathrm{vtx}}}^{\mathrm{vtx}} \ge 6 \mathrm{GeV}^{1/2}$	$S_{E_T^{\text{miss}}}^{\text{vtx}} \ge 7 \text{ GeV}^{1/2}$	$S_{E_T^{\text{miss}}}^{\text{vtx}} \ge 8 \text{ GeV}^{1/2}$	•Use "track-ba
Transverse mass	$60 < m_{\rm T} < 100 {\rm GeV}$	$30 < m_{\rm T} < 90 {\rm GeV}$	$30 < m_{\rm T} < 80 {\rm GeV}$	to avoid large

d the possible systematics e selection.

nate the absolute acceptance)

- ale MET trigger. The data set period-by-period.
- lection is trigger-by-trigger.
- ased MET significance" e variation of SumEt.

1st June ,2011