

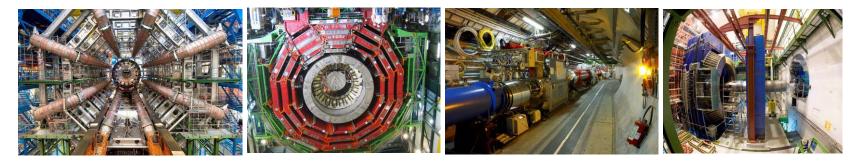
Applications on the EGEE Grid infrastructure

Slides from EGEE project members

www.eu-egee.org

EGEE-II INFSO-RI-031688

EGEE and gLite are registered trademarks

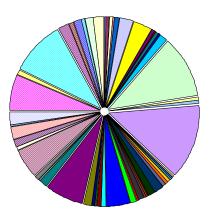

Overview

- Two "pilot" application areas in EGEE
 - High Energy Physics
 - Biomedical
- Examples of the growing number of diverse communities
- What's being done?! A classification of applications
- Challenges for application developers
- NOTE
 - Not giving details on each application but look for possible patterns and similarities with your own interests – perhaps in different disciplines
 - Grid middleware supports commonly met requirements so techniques will also cross between different communities

High Energy Physics

- High Energy Physics is a pilot application domain for EGEE
 - Large datasets
 - Large computing requirements
 - \rightarrow Major need for Grid technology to support distributed communities
- Support for Large Hadron Collider experiments through LHC Computing Grid (LCG)
 - ATLAS, CMS, LHCb, ALICE

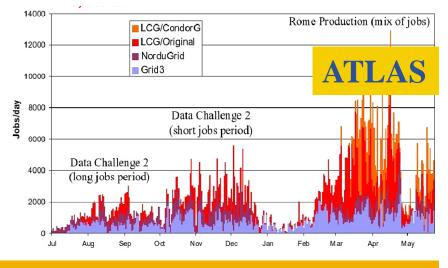
• Also support for other major international HEP experiments


egee

HEP success stories

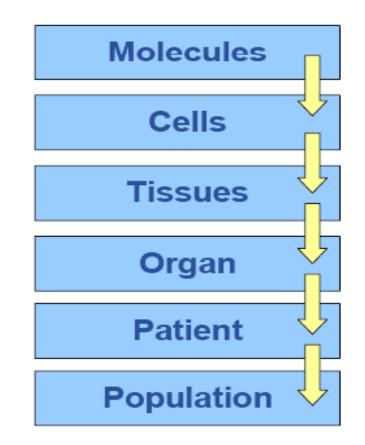
Enabling Grids for E-sciencE

- Fundamental activity in preparation of LHC start up
 - Physics
 - Computing systems
- Examples:
 - LHCb: ~700 CPU/years in 2005 on the EGEE infrastructure
 - ATLAS: over 20,000 jobs per day
 - Comprehensive analysis: see S.Campana et al., "Analysis of the ATLAS Rome Production experience on the EGEE Computing Grid", e-Science 2005, Melbourne, Australia
 - A lot of activity in all involved applications (including as usual a lot of activity within non-LHC experiments like BaBar, CDF and D0)


CPU used: 6,389,638 h Data Output: 77 TB

DIRAC.Barcelona.es 0.214% DIRAC.CERN.ch 0.571% DIRAC.CracowAgu.pl 0.001% DIRAC.LHCBONLINE.ch 0.779% DIRAC.PNPI.ru 0.000% DIRAC.ScotGrid.uk 3.068% DIRAC.Zurich.ch 0.756% LCG.BHAM-HEP.uk 0.705% LCG.Bari.it 1.357% LCG.CERN.ch 10.960% LCG.CGG.fr 0.676% LCG.CNAF.it 13.196% LCG.CPPM.fr 0.242% LCG.CY01.cy 0.103% LCG.Cambridge.uk 0.010% LCG.Durham.uk 0.476% LCG.FZK.de 1.708% LCG.Firenze.it 1.047% LCG.GR-02.gr 0.226% LCG.GR-04.gr 0.056% ■ LCG.HPC2N.se 0.001% LCG.IFCA.es 0.022% LCG.IN2P3.fr 4.143% LCG.IPP.bg 0.033% LCG.Imperial.uk 0.891% LCG.JINR.ru 0.472% LCG.Lancashire.uk 6.796% LCG.Manchester.uk 0.285% LCG.Montreal.ca 0.069% LCG.NSC.se 0.465% ICG Oxford uk 1 214% LCG.PNPI.ru 0.278% LCG.Pisa.it 0.121% LCG.RAL-HEP.uk 0.938% LCG.RHUL.uk 2.168% LCG.Sheffield.uk 0.094% LCG.Toronto.ca 0.343% LCG.UCL-CCC.uk 1.455%

DIRAC.Zurich-spz.ch 0.0 LCG.ACAD.bg 0.106% LCG.Barcelona.es 0.281% LCG.Bologna.it 0.032% LCG.CESGA.es 0.528% LCG.CNAF-GRIDIT.it 0.012% LCG.CNB.es 0.385% LCG.CSCS.ch 0.282% LCG.Cagliari.it 0.515% LCG.Catania.it 0.551% ■LCG.Edinburgh.uk 0.031% LCG.Ferrara.it 0.073% LCG.GR-01.ar 0.349% LCG.GR-03.gr 0.171% LCG.GRNET.ar 1.170% LCG.ICI.ro 0.088% LCG.IHEP.su 1.245% LCG.INTA.es 0.076% LCG.ITEP.ru 0.792% LCG.lowa.us 0.287% LCG.KFKI.hu 1.436% LCG.Legnaro.it 1.569% LCG.Milano.it 0.770% LCG.NIKHEF.nl 5.140% LCG.Napoli.it 0.175% I CG PIC es 2 366% LCG.Padova.it 2.041% LCG.QMUL.uk 6.407% LCG.RAL.uk 9.518% LCG.SARA.nl 0.675% LCG.Torino.it 1.455% LCG.Triumf.ca 0.105% LCG.USC.es 1.853%

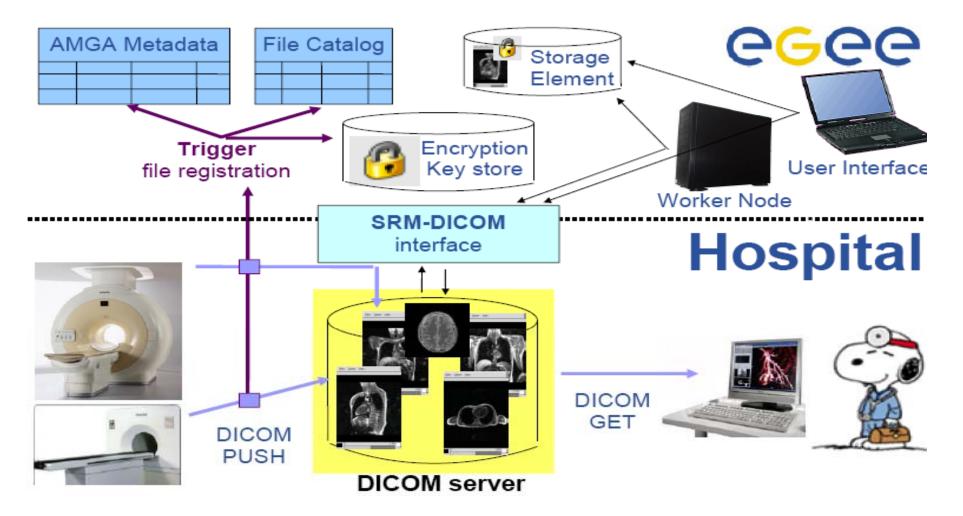

Biomedical applications

Enabling Grids for E-sciencE

- Bioinformatics
 - Genomics
 - Proteomics
 - Phylogeny...

Medical imaging

- Medical imaging
- Computer Aided Diagnosis
- Therapy planning
- Simulation...
- Life sciences
 - Drug discovery
 - Epidemiology


Biomedical community and the Grid, EGEE User Forum, March 1st 2006, I. Magnin

EGEE-II INFSO-RI-031688

. . .

Data management – medical images

Enabling Grids for E-sciencE

Biomedical community and the Grid, EGEE User Forum, March 1st 2006, I. Magnin

EGEE-II INFSO-RI-031688

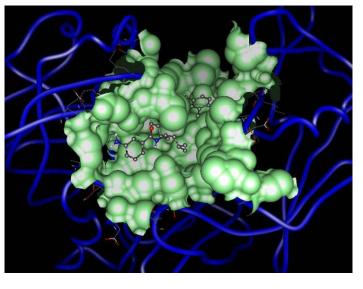
GGGG

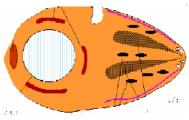
Applications Example: WISDOM

Grid-enabled drug discovery process for neglected diseases

- In silico docking

GGGG


- compute probability that potential drugs dock with target protein
- To speed up and reduce cost to develop new drugs


• WISDOM (World-wide In Silico Docking On Malaria)

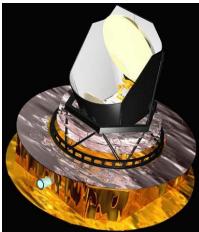
- First biomedical data challenge
- 46 million ligands docked in 6 weeks
- 1TB of data produced
- 1000 computers in 15 countries
 - Equivalent to 80 CPU years
- Second data challenge on Avian flu in April 2006
 - 300,000 possible drug components tested
 - 8 different targets

EGEE-II INFSO-RI-031688

- 2000 computers used for 4 weeks

Astroparticle physics: MAGIC

- Major Atmospheric Gamma Imaging Cherenkov telescope (MAGIC)
 - Origin of VHE γ -rays (30 GeV TeV)
 - Active Galactic Nuclei (AGN)
 - Supernova Remnants
 - Unidentified EGRET sources
 - Gamma Ray Bursts
 - Huge hadronic background \rightarrow MC simulations
 - to simulate the background of one night, 70 CPUs (P4 2GHz) need to run for 19200 days
 - Observation data are big too!
- MAGIC Grid
 - Use three national Grid centres as backbone
 - All are members of EGEE
- Work to build a second telescope is currently in progress
- \rightarrow Towards a virtual observatory for VHE γ -rays



Astroparticle physics: PLANCK

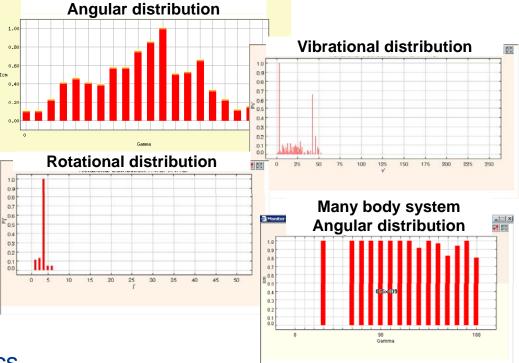
- PLANCK satellite mission
 - Measure cosmic microwave background (CMB)
 - At even higher resolution than previous missions
 - Launch in 2008; duration >1 year

Enabling Grids for E-sciencl

Application ole Planck/LFI - N simulat sion 300 ers 7 12 times faster!!! but ~50/o failure rate 250 pales 200 GHZ 150 SK 100 22 50 Run Time [h]

eGee

Computational Chemistry

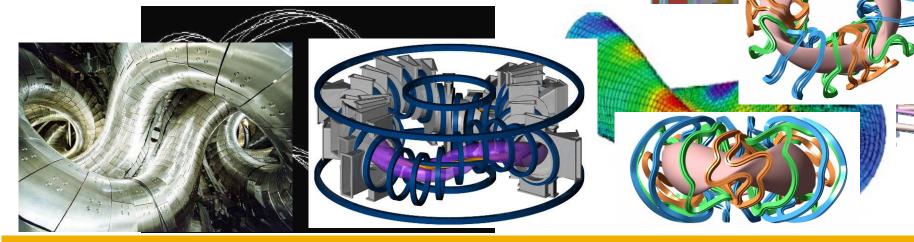

GEMS (Grid Enabled Molecular Simulator) application

Enabling Grids for E-sciencE

- Calculation and fitting of electronic energies of atomic and molecular aggregates (using high level *ab initio* methods)
- The use of statistical kinetics and dynamics to study chemical processes
- Virtual Monitors

eeee

- Angular distributions
- Vibrational distributions
- Rotational distributions
- Many body systems
- End-User applications
 - Nanotubes
 - Life sciences
 - Statistical Thermodynamics
 - Molecular Virtual Reality

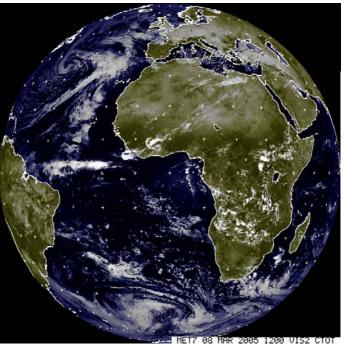


Fusion

Enabling Grids for E-sciencE

- E.g. International Thermonuclear Experimental Reactor (ITER)
- Distributed data storage and handling needed
- Computing power needed for
 - Making decisions in real time
 - Solving kinetic transport
 → particle orbits
 - Stellarator optimization
 → magnetic field to contain the plasma

EGEE-II INFSO-RI-031688

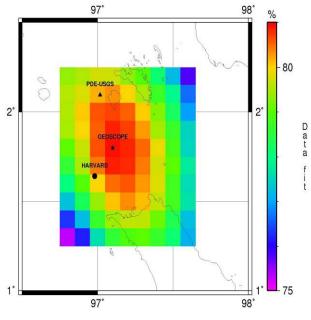

GGGG

Earth Science Applications

- Community
 - Many small groups that aggregate for projects (and separate afterwards)
- The Earth
 - Complex system
 - Independent domains with interfaces
 - Solid Earth Ocean Atmosphere
 - Physics, chemistry and/or biology
- Applications
 - Earth observation by satellite
 - Seismology
 - Hydrology
 - Climate
 - Geosciences
 - Pollution

- Meteorology, Space Weather
- Mars Atmosphere
- Database Collection

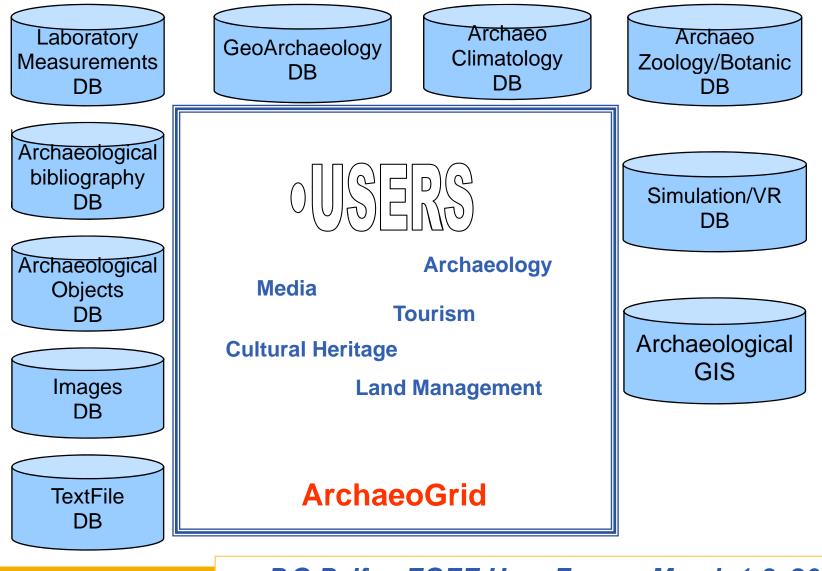
Earth Sciences: Earthquake analysis


Enabling Grids for E-sciencE

• Seismic software application determines:

- Epicentre, magnitude, mechanism
- May make it possible to predict future earthquakes
- → Assess potential impact on specific regions
- Analysis of Indonesian earthquake (28 March 2005)
 - Data from French seismic sensor network GEOSCOPE transmitted to IPGP within 12 hours after the earthquake
 - Solution found within 30 hours after earthquake occurred
 - 10 times faster on the Grid than on local computers
 - Results

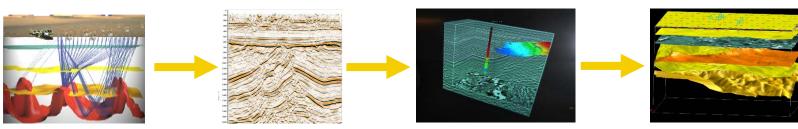
GGGGG


- Not an aftershock of December 2004 earthquake
- Different location (different part of fault line further south)
- Different mechanism
- Rapid analysis of earthquakes is important for relief efforts

ArchaeoGrid

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688


P.G.Pelfer, EGEE User Forum, March 1-3, 2006

Industrial applications

- EGEODE
 - Industrial application from Compagnie Générale de Géophysique running on EGEE infrastructure
 - Seismic processing platform

- GG
- Based on industrial application Geocluster© used at CGG
- Being ported to EGEE for Industry and Academia

OpenPlast project

- French R&D programme to develop and deploy Grid platform for plastic industry (SMEs)
- Based on experience from EGEE (supported by CS)
- Next: Interoperability with other Grids

 Annual event allowing users to share experiences and give feedback to EGEE

Extremely successful and popular mechanism for:

- Increasing interactions between users
- Presenting what has been achieved using grid technology
- Discussing problems and solutions

Conclusion

- >200 Virtual Organisations from 10 domains, many applications under evaluation
- Production-quality gLite middleware to support many different application groups
- User Forum: Annual event allowing users to share experiences and give feedback to EGEE

Overview

- Two "pilot" application areas in EGEE
 - High Energy Physics
 - Biomedical
- Examples of the growing number of diverse communities
- What's being done?! A classification of applications
- Challenges for application developers
- NOTE
 - Not giving details on each application but look for possible patterns and similarities with your own interests – perhaps in different disciplines
 - Grid middleware supports commonly met requirements so techniques will also cross between different communities

Characteristics of Grid Applications

C. Loomis (LAL-Orsay)

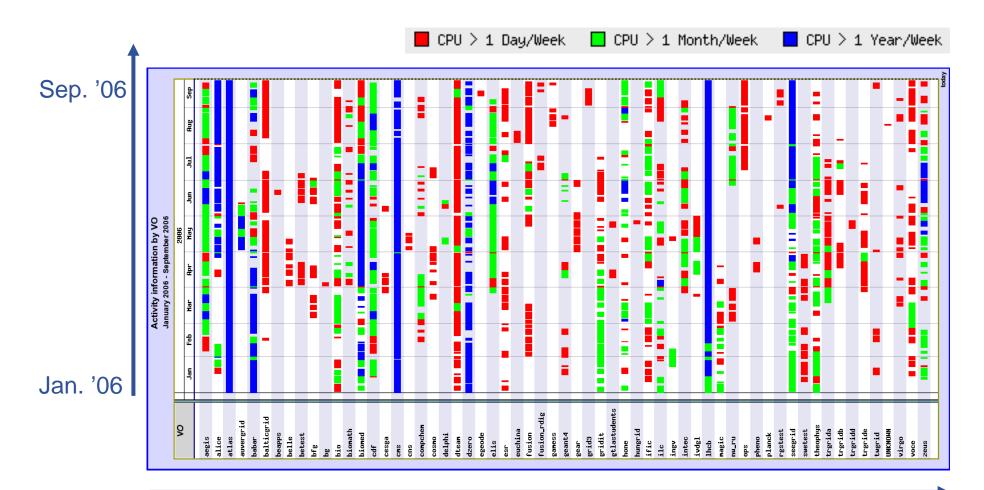
EGEE'06 Conference (Geneva) 25-29 September 2006

www.eu-egee.org

INFSO-RI-031688

- Status
 - EGEE's users, applications, and virtual organizations
 - "Application Identification and Support" activity
 - Evolution: project, users, and needs

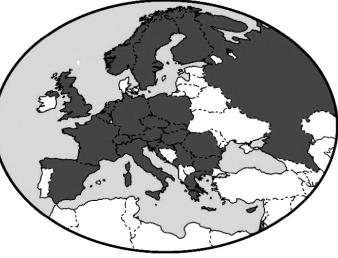
- Grid Application "Families"
- Summary and Outlook


- Routine and large-scale use of EGEE infrastructure to produce scientific results.
- VOs:
 - 165+ VOs (90+ registered) using the grid

- App. Deploy. Plan (<u>https://edms.cern.ch/document/722131/2</u>)
- Domains:
 - High-Energy Physics: LHC, Tevatron, HERA, ...
 - **Biology**: Medical Images, Bioinformatics, Drug Discovery
 - Earth Science: Hydrology, Pollution, Climate, Geophysics, ...
 - Astrophysics: Planck, MAGIC
 - Fusion
 - Computational Chemistry
 - Related Projects: Finance, Digital Libraries, ...
 - **New areas**: nanotechnology, ...

CPU Usage

Enabling Grids for E-sciencE



Virtual Organizations

Application Identification and Support (NA4)

- 25 countries, 40 partners, 280+ participants, 1000s of users
- Support the large and diverse EGEE user community:
 - **Promote dialog**: Users' Forums & EGEE Conferences
 - Technical Aid: Porting code, procedural issues
 - Liaison: Software and operational requirements
- Need active participation:
 - Feedback: Infrastructure, configuration, and middleware
 - Resources: Hardware and human

Evolution

• Evolution of Project (2001–now):

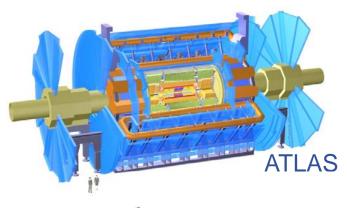
Enabling Grids for E-sciencE

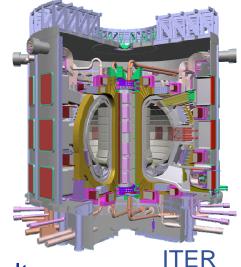
- European DataGrid: R&D
- EGEE: Re-engineering & Infrastructure
- EGEE-II: Infrastructure & Re-engineering

larger more grid apps.

- Evolution of Grid Users:
 - Focus: Grid technology \Rightarrow Scientific results $effect{effect}$
 - **Goal**: Grid technology \Rightarrow Grid as a tool
 - **Experience**: IT experts \Rightarrow IT "minimalists"
- These changes are healthy, but...
 - Rely less on IT competence of users.
 - More portable, more flexible middleware.

Application Families

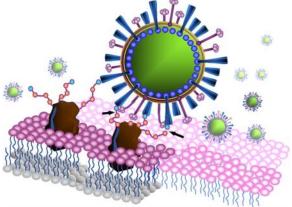

- Simulation
- Bulk Processing
- Responsive Apps.
- Workflow
- Parallel Jobs
- Legacy Applications



Simulation

- Examples
 - LHC Monte Carlo simulation

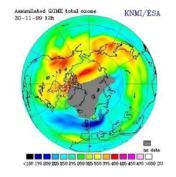
- Fusion
- WISDOM-malaria/avian flu
- Characteristics
 - Jobs are CPU-intensive
 - Large number of independent jobs
 - Run by few (expert) users
 - Small input; large output
- Needs
 - Batch-system services
 - Minimal data management for storage of results



- WISDOM focuses on in silico drug discovery for neglected and emerging diseases.
- Malaria Summer 2005
 - 46 million ligands docked
 - 1 million selected

- 1TB data produced; 80 CPU-years used in 6 weeks
- Avian Flu Spring 2006
 - H5N1 neuraminidase
 - Impact of selected point mutations on eff. of existing drugs
 - Identification of new potential drugs acting on mutated N1
- Fall 2006
 - Extension to other neglected diseases




• Examples

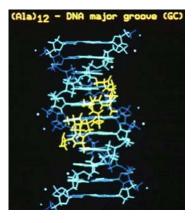
GGGG

- HEP processing of raw data, analysis

- Earth observation data processing
- Characteristics
 - Widely-distributed input data
 - Significant amount of input and output data
- Needs
 - Job management tools (workload management)
 - Meta-data services
 - More sophisticated data management

Responsive Apps. (I)

- Examples
 - Prototyping new applications
 - Monitoring grid operations
 - Direct interactivity
- Characteristics
 - Small amounts of input and output data
 - Not CPU-intensive
 - Short response time (few minutes)
- Needs
 - Configuration which allows "immediate" execution (QoS)
 - Services must treat jobs with minimum latency


Responsive Apps. (II)

- Grid as a backend infrastructure:
 - gPTM3D: interactive analysis of medical images
 - GPS@: bioinformatics via web portal

Enabling Grids for E-science

- GATE: radiotherapy planning
- DILIGENT: digital libraries
- Volcano sonification
- Characteristics
 - Rapid response: a human waiting for the result!
 - Many small but CPU-intensive tasks
 - User is not aware of "grid"!
- Needs
 - Interfacing (data & computing) with non-grid application or portal
 - User and rights management between front-end and grid

30

Workflow

- Examples
 - "Bronze Standard": image registratior

Enabling Grids for E-sciencE

- Flood prediction
- Characteristics
 - Use of grid and non-grid services
 - Complex set of algorithms for the analysis
 - Complex dependencies between individual tasks

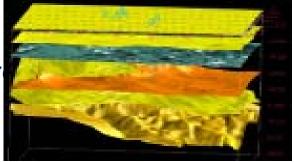
Needs


- Tools for managing the workflow itself
- Standard interfaces for services (I.e. web-services)

Parallel Jobs

- Examples
 - Climate modeling
 - Earthquake analysis
 - Computational chemistry
- Characteristics
 - Many interdependent, communicating tasks
 - Many CPUs needed simultaneously

- Use of MPI libraries
- Needs
 - Configuration of resources for flexible use of MPI
 - Pre-installation of optimized MPI libraries



Legacy Applications

- Examples
 - Commercial or closed source binaries
 - Geocluster: geophysical analysis softwar
 - FlexX: molecular docking software

Enabling Grids for E-sciencE

- Matlab, Mathematics, ...

- Characteristics
 - Licenses: control access to software on the grid
 - No recompilation \Rightarrow no direct use of grid APIs!
- Needs
 - License server and grid deployment model
 - Transparent access to data on the grid

- Security
 - Ability to control access to services and to data
 - § Fine-grained access control lists

- S Encryption & logging for more demanding disciplines
- § Access control consistently implemented over all services
- VO Management
 - Management of users, groups, and roles
 - Changing the priority of jobs for different users, groups, roles
 - Quota management for users, groups, roles
 - Definition and access to special resources
 - § Application-level services
 - **§** Responsive queues (guaranteed, low-latency execution)

- Services exist for many of the application needs and plans exist to fix existing deficiencies or holes.
- No longer "one-size-fits-all" world:

Enabling Grids for E-sciencE

- Works for low-level services (CPU, storage).
- Higher-level services imply trade-offs:
 - § E.g. latency vs. bulk response of meta-schedulers
 - E.g. security vs. speed for data access
- Commonalities allow "one-size-fits-many" solutions.
- Future evolution:

Ş

- Standards more important than ever: plug-and-play services.
- Diversification of higher-level services is healthy and inevitable.
- Integration of third-party tools an absolute necessity.

Overview

• Two "pilot" application areas in EGEE

- High Energy Physics
- Biomedical
- Examples of the growing number of diverse communities
- What's being done?! A classification of applications
- Challenges for application developers
- NOTE
 - Not giving details on each application but look for possible patterns and similarities with your own interests – perhaps in different disciplines
 - Grid middleware supports commonly met requirements so techniques will also cross between different communities

CGCC Different Goals for App. Development

- I need resources for my research
 - I need richer functionality
 - MPI, parametric sweeps,...
 - Data and compute services together...

• I provide an application for (y)our research

- How!?
 - Pre-install executables ?
 - Hosting environment?
 - Share data
 - Use it via portal?
- We provide applications for (y)our research
 - Also need:
 - Coordination of development
 - Standards

• • • •

Π ngineering challenges increasing

Challenges

Enabling Grids for E-science

- Research software is often
 - Created for one user: the developer
 - Familiarity makes it useable
 - Short-term goals:
 Used until papers are written and then discarded

Grid applications are often used

- by a VO
- Without support from developer
- In new contexts and workflows

Need expertise in:

- software engineering
- application domain
- grid computing/

- Grid application developers are
 - In a research environment
 - Yet their s/w must have:
 - Stability
 - Documentation
 - Useability
 - Extendability
 - i.e. Production

quality

EGEE-II INFSO-RI-031688

- Observe routine and large-scale use of the EGEE infrastructure by numerous, diverse set of users.
- EGEE provides backbone services which support wide range of different grid application families.

 Simulation, Bulk Processing, Responsive Apps., Workflow, Parallel Jobs, Legacy Applications

- Third-party tools are becoming increasingly important for providing specialized (but flexible) services to particular groups of applications.
- NA4 website (<u>http://egeena4.lal.in2p3.fr/</u>)

Participation

- Related projects:
 - DEGREE
 - DILIGENT
 - EGRID
 - EU ChinaGRID
 - EU MedGRID
 - GRIDCC
 - many more…
- Other collaborations:
 - Geant4
 - ITU
 - ProActive
 - many more…

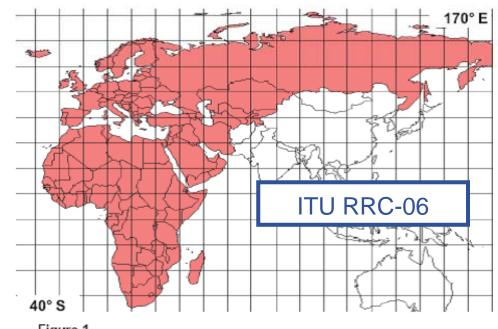


Figure 1 The extent of the planning area for the RRC-06

40

- EGEE Conferences and Users' Forums
 - Share your expertise, learn from other users.
 - Be open to collaboration with others.
- Do (or don't) like something, speak up!
 - VO issues, needs \Rightarrow VO Managers' Group
 - Resource, proc. problems \Rightarrow Operations Advisory Group (OAG)
 - Talk with NA4 steering committee
- Report problems:
 - Don't be afraid to use GGUS.
 - Report middleware annoyances \Rightarrow someone else is annoyed too!