The Bronze-Standard application

Principle, deployment and optimization on EGEE

EGEE and SEE-GRID Summer School on Grid Application Support Friday, June 29th

Outline

The Bronze-Standard application (10 min)

- The medical imaging context
- Goals and methods

Grid deployment of the application (15 min)

- Grid challenges
- Workflow deployment

• Performance issues and optimization (15 min)

- Importance of the latency on EGEE
- Timeout optimization

Medical image registration

Medical images registration

- Goal: fusing two images acquired in different frames
- Input data : a target image and a floating image
- Output data : a transformation and a result image

Before registration

After registration

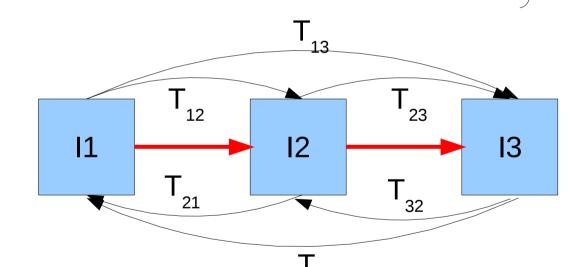
Performance evaluation of registration

• Simulation of noisy data:

- Apply transformation (ground truth)
- Measure how far the result is from the truth

Real data on controlled environment

- Imaging a physical phantom
- Gold standard: measure the motion of the phantom


Database of in-vivo real images

- Representative of the clinical application
- Span all sources of variability
- No gold standard

The Bronze Standard idea

- N images, m algorithms
- N.(N-1).m transformations measured
- N-1 transformations to estimate —

Redundancy

- Exploit redundancy to compute
 - Mean transformations T_{μ} (Bronze standard)
 - Variances on the transformations (Accuracy)

The Bronze Standard method

• The $\overline{T_{ii}}$ transformations minimize:

$$\sum_{i,j\in[1,n],k\in[1,m]} d\left(T_{i,j}^k,\bar{T}_{i,j}\right)^2$$

• Norm on the rigid transformations:

$$\mu^2(R(\theta, n), t) = \frac{\theta^2}{\sigma_{\mathrm{r}}^2} + \frac{\|t\|^2}{\sigma_{\mathrm{t}}^2}$$

• Robust dig
$$d(T_1, T_2) = \min\left(\mu^2(T_1^{(-1)} \circ T_2), \chi^2\right)$$

The Bronze Standard method

• The $\overline{T_{ii}}$ transformations minimize:

$$\sum_{i,j\in[1,n],k\in[1,m]} d\left(T_{i,j}^k,\bar{T}_{i,j}\right)^2$$

Norm on the rigid transformations:

 $\mu^2(R(\theta, n), t) = \frac{\theta^2}{\sigma_r^2} + \frac{\|t\|^2}{\sigma_t^2} \quad \text{variances}$ The transformation

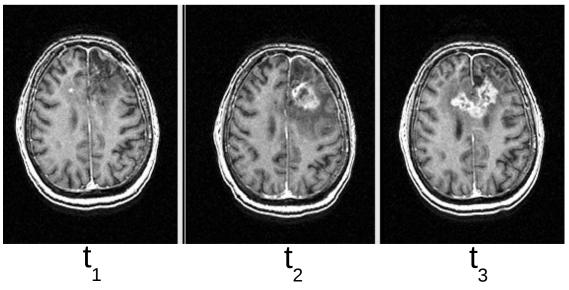
Robust distance on the transformations:

$$d(T_1, T_2) = \min\left(\mu^2(T_1^{(-1)} \circ T_2), \chi^2\right)$$

June 29th 2007

Assessing the algorithms

- The accuracy of an algorithm **k** is given by:
 - Computing the $\overline{T_{ii}}$ without k's results
 - Computing distances to $\overline{T_{ii}}$ for k's transformations


Clinical use-case

Follow-up of brain radiotherapy

- Requires several registrations
- Precision of the tumor evolution estimation required

Image database

- 29 patients
- 2 time points minimum
- Gadolinium injected T1 MRIs
- Example for one patient (3 time points):

Registration algorithms assessed

- Rigid registration algorithms
- Feature-based (crest lines):
 - CrestMatch
 - PFRegister (robust version)

Intensity-based:

- Baladin (bloc matching)
- Yasmina (Powell optimization)

• Initialized with CrestMatch's result:

- Ensures that all the algorithms converge to the same minimum
- Measure of the accuracy

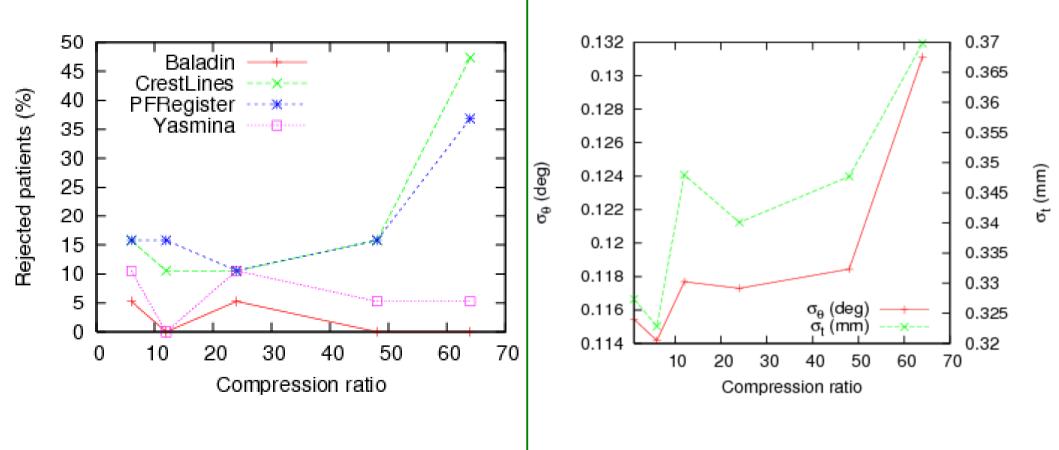
Accuracy results

Mean error on the transformations:

 $\sigma_r = 0.130 \ deg$; $\sigma_{\tau} = 0.345 \ mm$

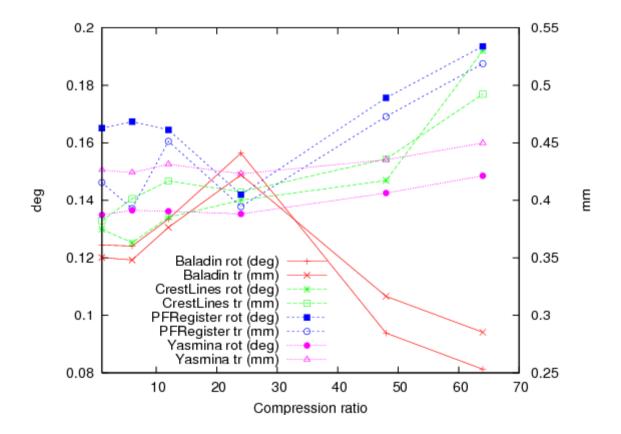
• Error on the bronze standard:

 $\sigma_r = 0.05 \ deg$; $\sigma_{\tau} = 0.148 \ mm$


• Accuracy of the algorithms:

Algorithm	$\sigma_{ m r}(deg)$	$\sigma_{\rm t}(mm)$
CrestMatch	0.150	0.424
PFRegister	0.180	0.416
Baladin	0.139	0.395
Yasmina	0.137	0.445

Impact of lossy compression


Robustness

Repeatability

Impact of lossy compression

Accuracy results:

Outline

- The Bronze-Standard application (10 min)
 - The medical imaging context
 - Goals and methods
- Grid deployment of the application (15 min)
 - Grid challenges
 - Workflow deployment

• Performance issues and optimization (15 min)

- Importance of the latency on EGEE
- Timeout optimization

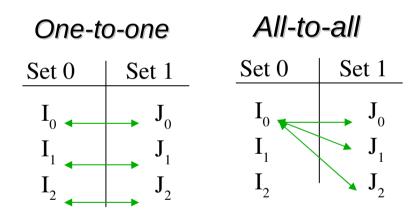
Grid challenges of the application

• Constraints/needs:

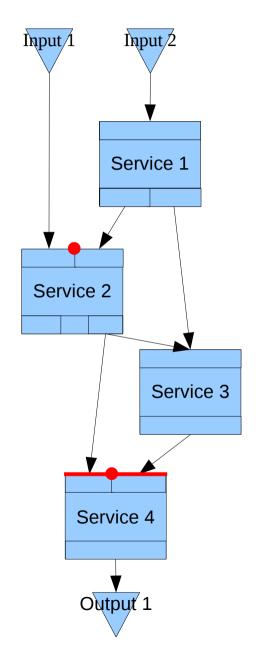
- 1) Sharing algorithms from different institutes
- 2) Sharing the data between the algorithms
- 3) Computing power

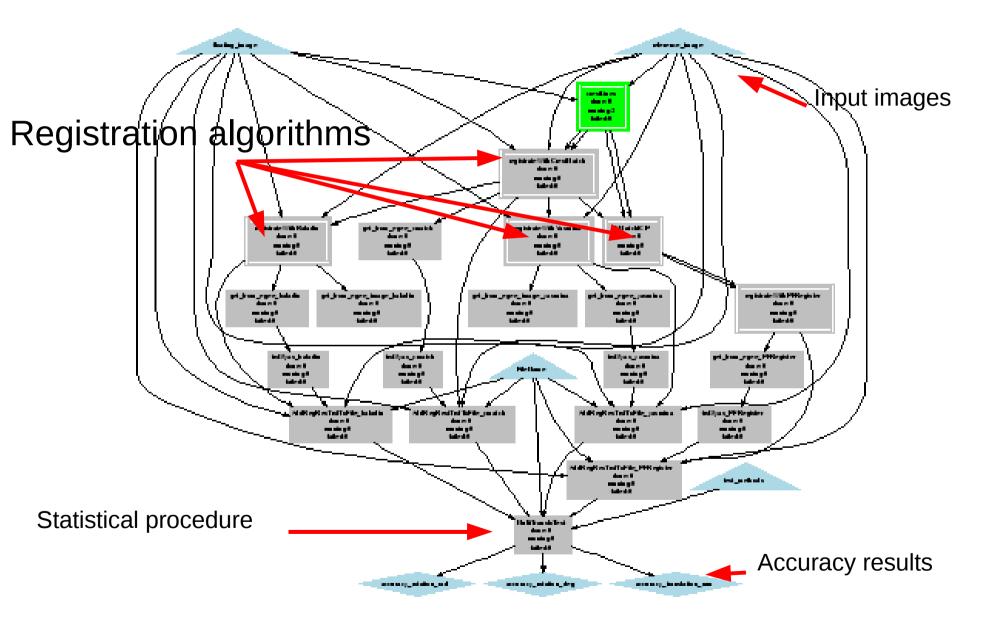
• Solutions:

L) Workflow of services

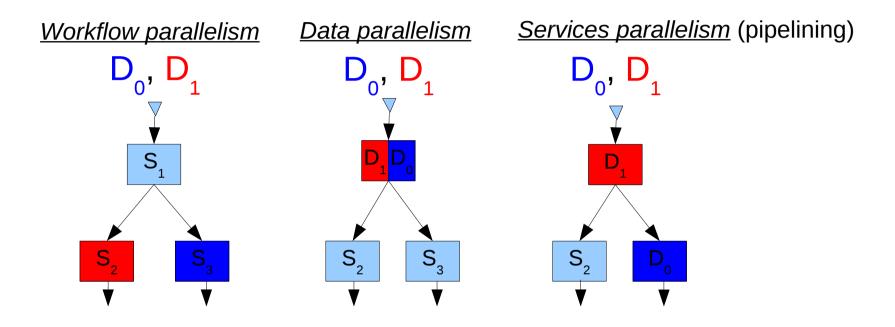

2) Data storage on SE inside a VO

3) Optimized grid execution

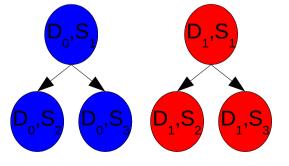

Service-based workflows


- Input/output of the application
- Data dependencies between services
- Iteration strategy between services inputs

- Data synchronization barriers —
- Instantiation on data at execution time

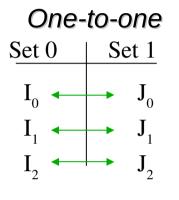


Workflow of the application



Parallelism in service workflows

• 3 kinds of parallelism can be exploited:

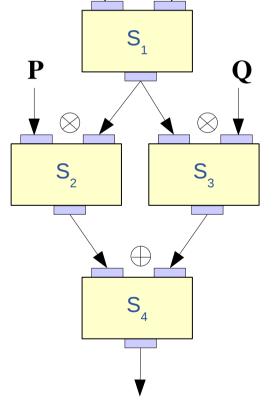


• Data and service parallelism are intrinsic in task graphs:

Iteration strategies in a parallel WF

One-to-one operators assume ordered data set

• No problem if:


- Data parallelism is not present (order is preserved)
- Service parallelism is not present
- One to one operator in a data+service parallel execution:
 - Keep track of the data graph
 - Two data segments are composed **iif** they are correlated
 - Correlation groups are defined by the user

Explicit correlation through groups

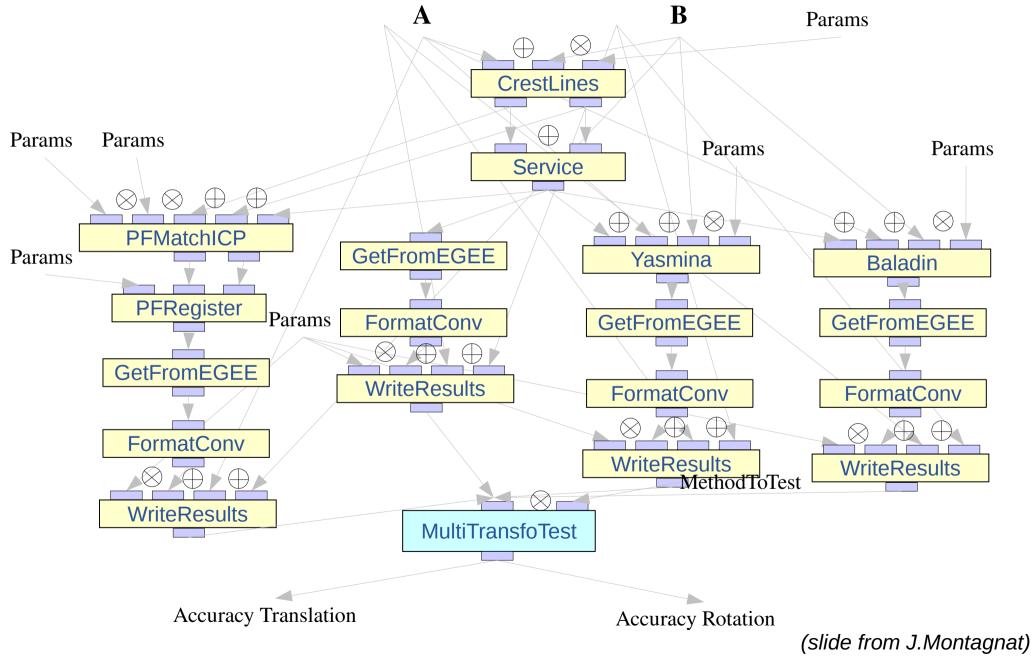
$$- \mathbf{G} = \{ (\mathbf{A}_{0}, \mathbf{B}_{0}), (\mathbf{A}_{1}, \mathbf{B}_{1}), \dots \}$$

- No relation between A_i and P_k

A

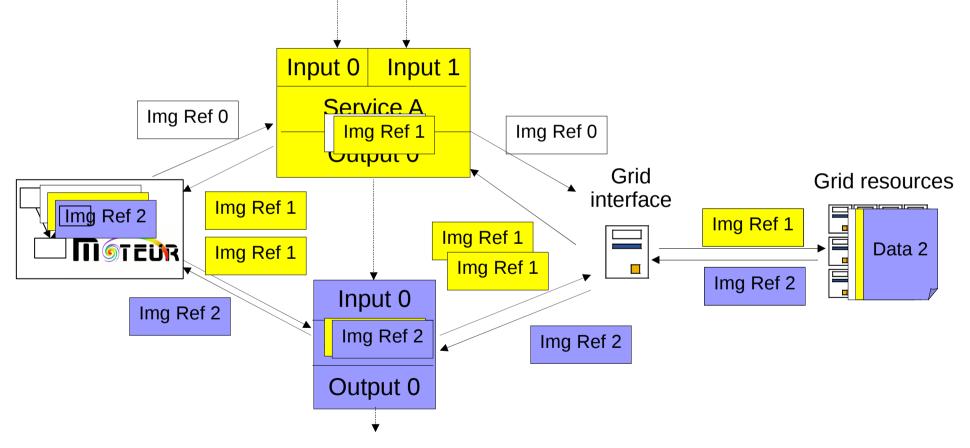
B

 \oplus


• Service S₁:

- \oplus composition: A_i and B_i combined iff i=j
- Service S₄:
 - $(A_i \oplus B_i) \otimes P_k$ and $(A_i \oplus B_i) \otimes Q_m$ combined iff i=j
 - (($A_i \oplus B_i$) $\otimes P_k$) \oplus (($A_i \oplus B_i$) $\otimes Q_m$) for all k and m

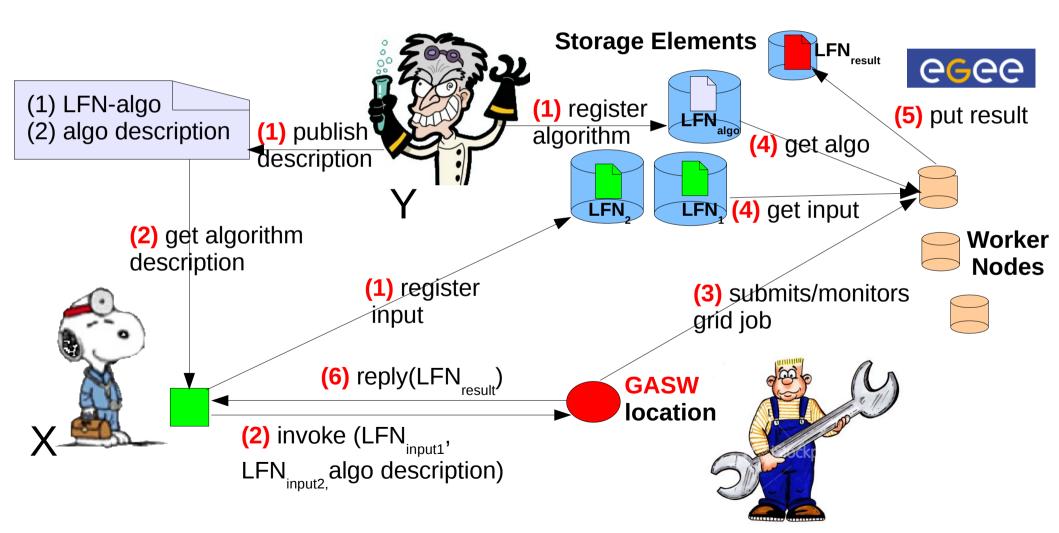
 $((\mathbf{A} \oplus \mathbf{B}) \otimes \mathbf{P}) \oplus ((\mathbf{A} \oplus \mathbf{B}) \otimes \mathbf{Q})$


(slide from J.Montagnat)

Bronze Standard application example

Execution on EGEE

- Development of \mathbf{m} or \mathbf{tirk} , a parallel service workflow engine
- The workflow engine is isolated from the grid:



Application codes need to be wrapped in Web-Services

June 29th 2007

Generic Application Service Wrapper

• The grid job handling can be decoupled from Y

GASW algorithm descriptor

<description>

Executable access method:

- URL
- Grid file

Input/Output

- Command-line options
- Access methods (for files)
- Sandbox files access method

```
<executable name="CrestLines.pl">
    <access type="URL">
         <path value="http://somewhere.eu/"/>
    </access>
    <value value="CrestLines.pl"/>
     <input name="image" option="-im1">
        <access type="LFN" />
    </input>
    <input name="scale" option="-s"/>
    <output name="crest_lines" option="-c2">
        <access type="LFN" />
    </output>
     <sandbox name="convert8bits">
        <access type="URL">
          <path value="http://elsewhere.dk/"/>
        </access>
        <value value="Convert8bits.pl"/>
    </sandbox>
   </executable>
</description>
```

GASW algorithm descriptor

<description>

Executable access method:

- URL
- Grid file

Input/Output

- Command-line options
- Access methods (for files)
- Sandbox files access method

```
<executable name="CrestLines.pl">
    <access type="URL">
         <path value="http://somewhere.eu/"/>
    </access>
    <value value="CrestLines.pl"/>
     <input name="image" option="-im1">
        <access type="LFN" />
    </input>
    <input name="scale" option="-s"/>
    <output name="crest_lines" option="-c2">
        <access type="LFN" />
    </output>
     <sandbox name="convert8bits">
        <access type="URL">
          <path value="http://elsewhere.dk/"/>
        </access>
        <value value="Convert8bits.pl"/>
    </sandbox>
   </executable>
</description>
```

GASW algorithm descriptor

Executable access method:

- URL
- Grid file

Input/Output

- Command-line options
- Access methods (for files)

Sandbox files access method

```
<description>
   <executable name="CrestLines.pl">
    <access type="URL">
         <path value="http://somewhere.eu/"/>
    </access>
    <value value="CrestLines.pl"/>
     <input name="image" option="-im1">
        <access type="LFN" />
    </input>
    <input name="scale" option="-s"/>
    <output name="crest lines" option="-c2">
        <access type="LFN" />
    </output>
     <sandbox name="convert8bits">
        <access type="URL">
          <path value="http://elsewhere.dk/"/>
        </access>
        <value value="Convert8bits.pl"/>
    </sandbox>
   </executable>
</description>
```

Outline

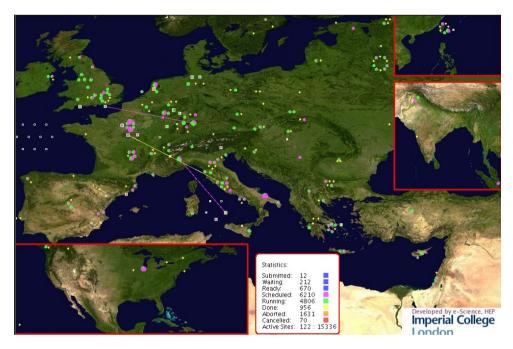
- The Bronze-Standard application (10 min)
 - The medical imaging context
 - Goals and methods
- Grid deployment of the application (15 min)
 - Grid challenges
 - Workflow deployment

• Performance issues and optimization (15 min)

- Importance of the latency on EGEE
- Timeout optimization

Optimization on EGEE

• Production grid:


- 50 countries
- 237 clusters / 36500 CPU
- 23 PB storage
- 5000 users
- High throughput

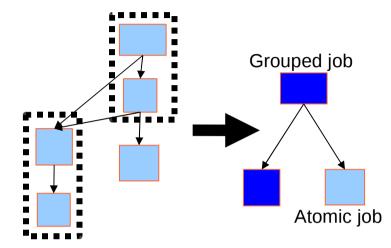
• High latency

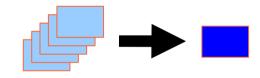
- Duration between submission and execution
- ≈ 5 min +/- 5 min

Coming from

- Large-scale (network overheads, faults)
- Multi-users (resources shared between users)

Latency reduction solutions


Reducing latency at the workflow level


- Grouping sequential jobs
 - + Lowers the size of the critical path
 - Increases job sizes
- Grouping parallel jobs
 - + Lowers the impact of latency variability
 - Reduces parallelism

Reducing latency at the job level

- Redundant submissions
 - + Lowers the impact of variability
 - Scaling problem

Timeout and resubmission

Probabilistic approach

Objective: to minimize latency pay-off

- Time-out and resubmission
- Model the job latency
 - Compute expected execution time

• Take into account the complexity of the system

- Difficult to provide deterministic modeling
- Probabilistic modeling

Adapt to different system behaviors

- Highly reliable clusters
- More error-prone grids

Grid latency modeling

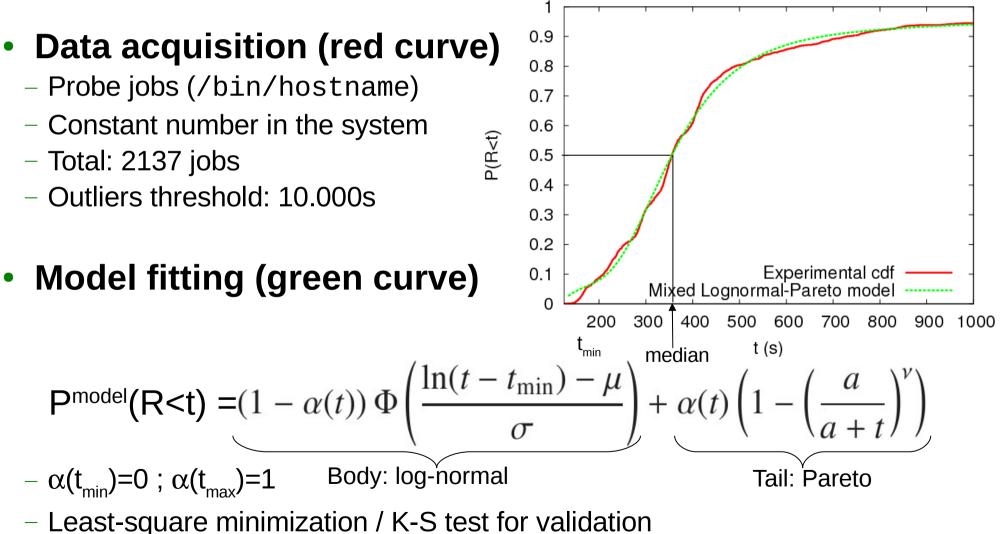
Normal operating mode modeled by a random variable R R

 $-\frac{1}{10}$ Job submission Matchmaking / Logging Queuing Execution \rightarrow time

- Distribution of **R** supposed to be estimated (from off-line measures)

Faults modeled by an outlier ratio p

• Outliers may come from:


- Hardware failures and software bugs
- Locally heavy load
- Scheduling errors

• Example on the EGEE production infrastructure:

- Measured outlier ratio $\rho \approx 2.5\%$
- Mixed Log-normal/Pareto model for R

Model of the latency on EGEE

Cumulative density function (c.d.f) of R

Timeout optimization

Hypotheses

- Timeout => cancellation + resubmission
- Neglect Cancel/Resubmit cost
- Neglect Cancel/Resubmit overload => independent submissions

Execution time from ith submission to completion

Wall-clock time Latency in normal mode

$$J_{i} = \begin{cases} r + R & \text{with probability } 1 - q \\ t_{\infty} + J_{i+1} & \text{with probability } q \end{cases}$$
but value Probability to timeout

Timeou

Probability to timeout

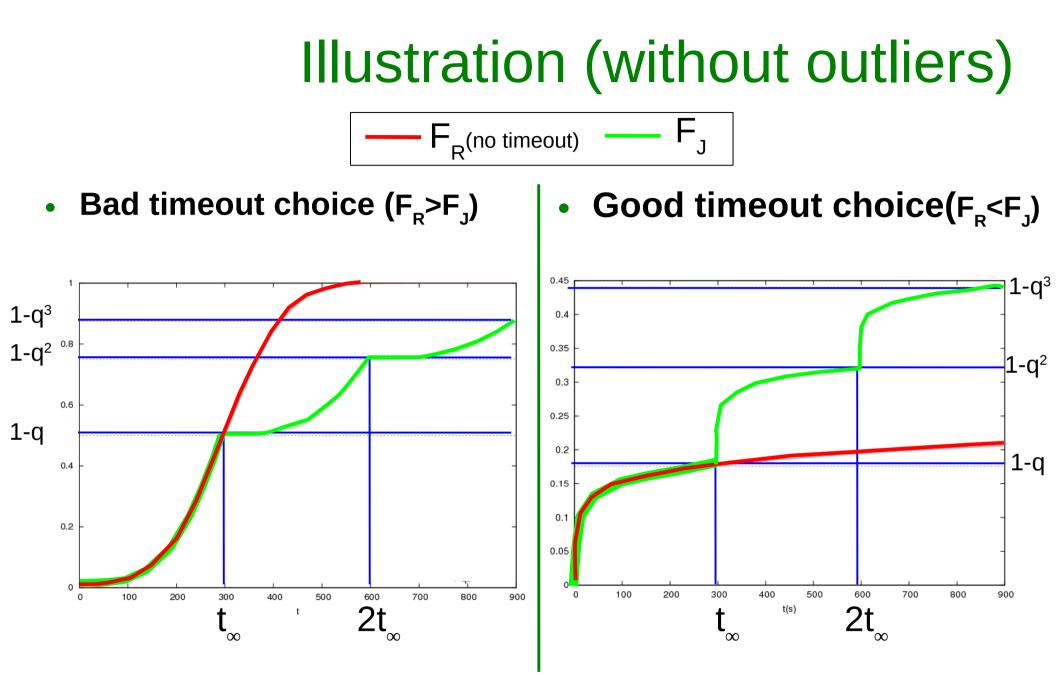
Outlier ratio

$$q = \rho + (1 - \rho)P(r + R > t_{\infty})$$

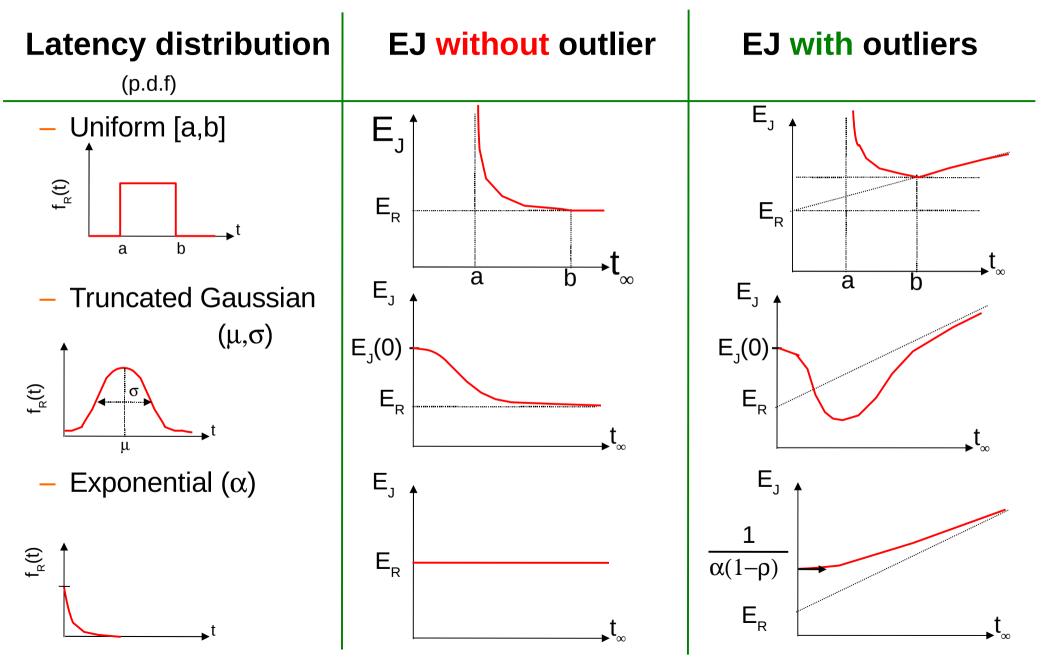
$$q = 1 - (1 - \rho)F_R(t_\infty - r)$$

June 29th 2007

The execution time J

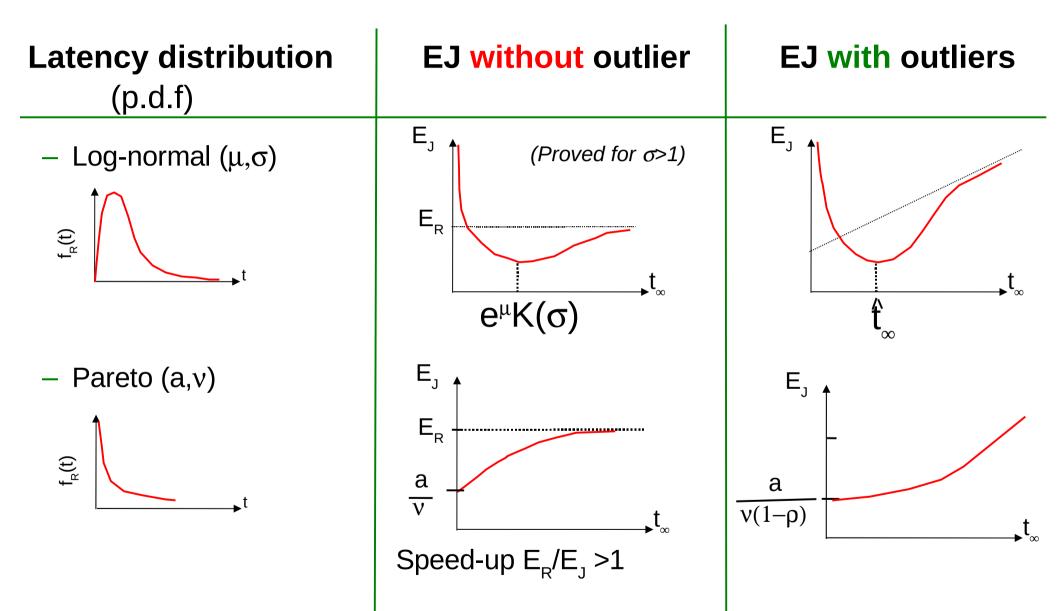

- The c.d.f F_j is known for every nt_w: $1 - F_J(nt_w) = P(J > nt_w) = q^n$
- If $nt_{\infty} < t < (n+1)t_{\infty}$: Timed-out n times $(n+1)^{th}$ attempt succeeded $F_J(t) = 1 - q^n + q^n (1 - \rho) F_R(t - nt_{\infty})$

Succeeded before (n+1)th submission


Not an outlier

- Expectation of J: $E_J(t_{\infty}) = \frac{1}{F_R(t_{\infty})} \int_0^{t_{\infty}} u f_R(u) du + \frac{t_{\infty}}{(1-\rho)F_R(t_{\infty})} - t_{\infty}$
- Best timeout value: $\hat{t}_{\infty} = \operatorname{argmin}(E_{J}(t_{\infty}))$

June 29th 2007



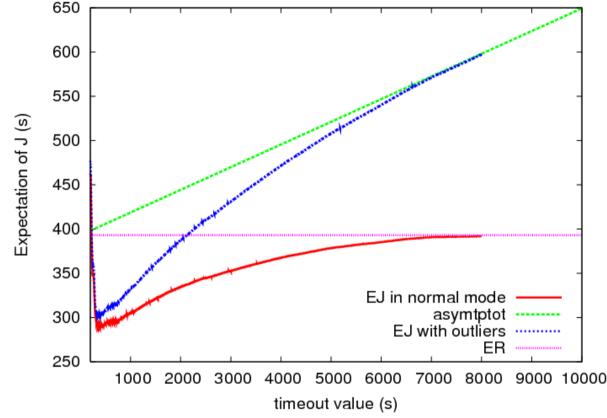
Light-tailed distributions

June 29th 2007

Heavy-tailed distributions

Results summary

Optimal timeout values


	Distribution of <i>R</i>	Without outliers	With outliers
		$(\rho = 0)$	$(\rho > 0)$
Light- tailed	Uniform	$+\infty$ (or b)	b
Lig tail	Trunc. Gaussian	$+\infty$	$0 < \hat{t}_{\infty} < +\infty$
	Exponential	any	0
Heavy- tailed	Log-normal (μ, σ)	$\hat{t}_{\infty} = e^{\mu} K(\sigma) < +\infty$	$0 < \hat{t}_{\infty} < +\infty$
	Pareto ($\nu > 1$)	0	0

• Singular values:

- $-\hat{t}_{\infty} = \infty$: do not set any timeout
- $-\hat{t}_{\infty} = 0$: probability to face a null latency is high

Experimental case

• Optimization on the distribution measured on EGEE

• Without outliers (red curve)

$$-\hat{t}_{\infty} = 360s; E_{J}(\hat{t}_{\infty}) = 289s$$

– Speed-up w.r.t E_R:1.36

- With outliers (blue curve) $\hat{t}_{\infty} = 358s$; $E_{J}(\hat{t}_{\infty}) = 300s$
- Overestimating the timeout better than underestimating it

June 29th 2007

References

On the medical imaging application:

 T. Glatard, X. Pennec, J. Montagnat. "Performance evaluation of gridenabled registration algorithms using bronze-standards" in MICCAI'06, pages 152--160, oct 2006

• On **MSTEUR** and its design:

 T. Glatard, J. Montagnat, D. Lingrand, X. Pennec. "Flexible and efficient workflow deployement of data-intensive applications on grids with MOTEUR" to appear in IJHPCA, 2007

• On the optimization of the application on EGEE:

 T. Glatard, J. Montagnat, X. Pennec. "Optimizing jobs timeouts on clusters and production grids" in CCGrid'07, pages 100-107, may 2007

http://www.i3s.unice.fr/~glatard

glatard@i3s.unice.fr