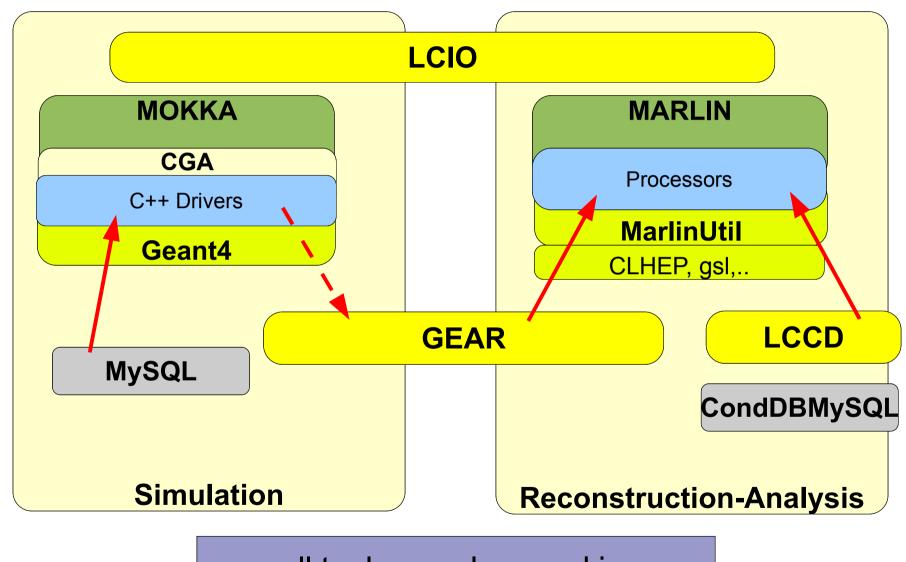
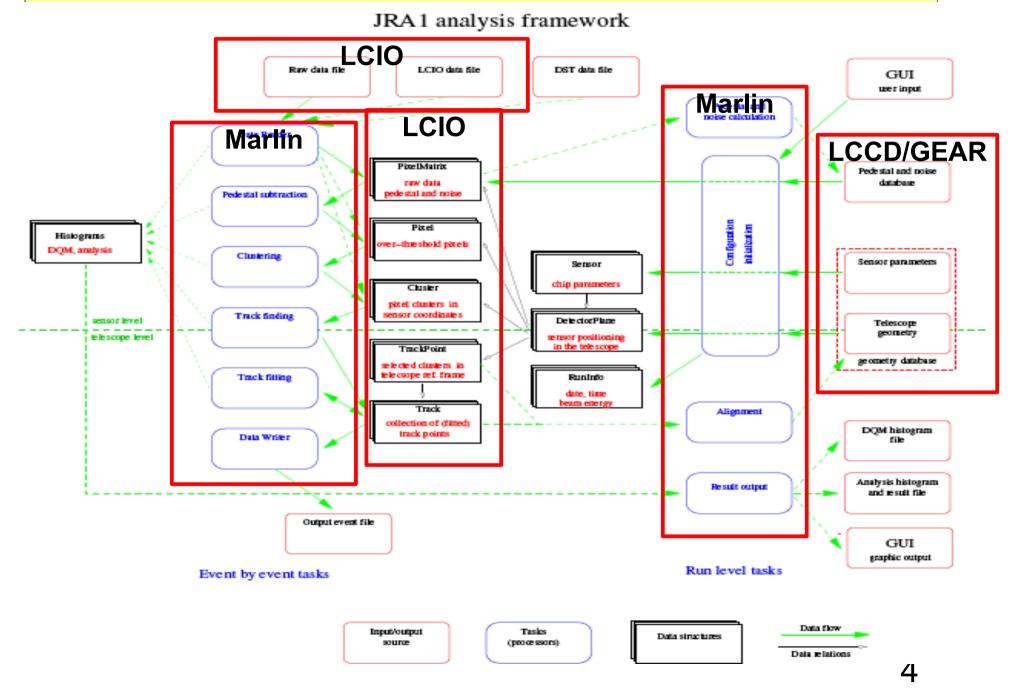
Core software tools for JRA1

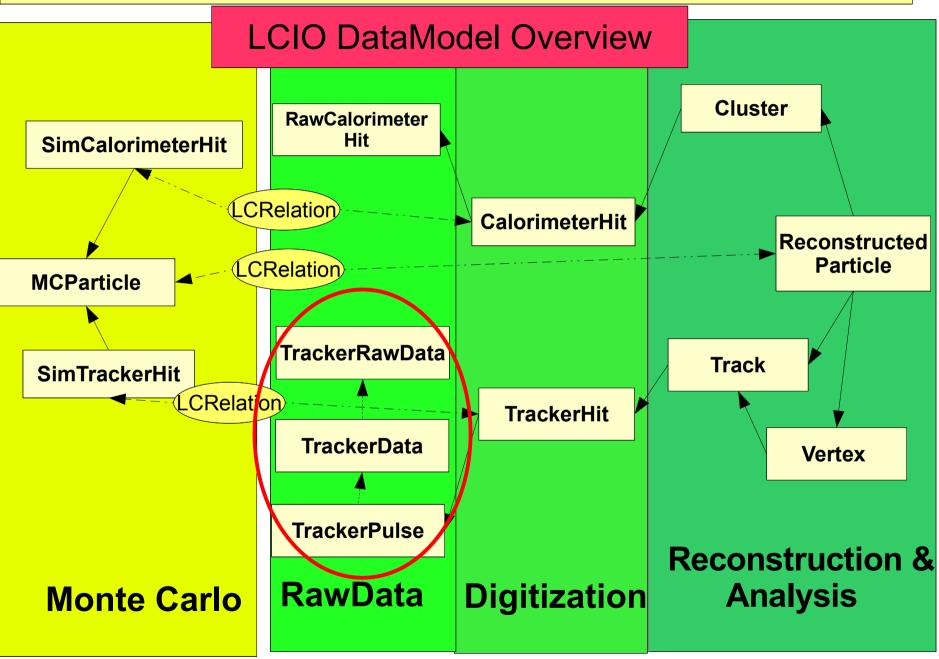

Frank Gaede DESY EUDET – JRA1 Software Meeting, Geneva March 30, 2007

1

Outline


- intro overview core tools
- DAQ data format
 - LCIO
- geometry information
 - GEAR
- conditions data
 - LCCD
- event display
 - CED
- histograms
 - (R)AIDA, root
- Summary

ILC-LDC software framework



all tools are also used in testbeam programs

JRA1 SW-Framework

LCIO Event Data Model

LCIO raw data classes for tracker

EVENT::TrackerRawData

- + ~ TrackerRawData()
- + getCellID0() : int
- + getCellID1() : int
- + getTime() : int
- + getADCValues() : const ShortVec&

EVENT::TrackerData

- + ~ TrackerData()
- + getCellID0() : int
- + getCellID1() : int
- + getTime() : float
- + getChargeValues() : const FloatVec&

raw readout classes with n measurements per cell uncalibrated (*short*) & calibrated (*float*)

EVENT::TrackerPulse

- + ~ TrackerPulse()
- + getCelIID0() : int
- + getCelIID1() : int
- + getTime() : float
- + getCharge() : float
- + getQuality() : int
- + getTrackerData() : TrackerData*

feature extracted signal for one cell

used by TPC prototypes

- VTX prototypes/testbeams
- used in Pixeltelescope code (A.Bulgheroni)

LCIO as DAQ format

LCIO can be used as native DAQ format

- data classes for raw data exist (RawTrackerData,...)
- LCGenericObject provides way for arbitrary user defined classes (performance issue!)
- if needed, LCIO could be extended to serve as a container for raw data records
 - -> use the same persistency package that is also used in analysis and simulation
 - need agreement between all DAQ groups within EUDET
 - -> dedicated DAQ software meeting May 2nd in Orsay prior to software workshop
 - work/discussion already started within LCIO developers group

your requirements are needed !

LCIO runtime extensions

- long pending user request:
 - attach arbitrary user objects to LCObjects
 - fast and easy creation of links (relations) between various LCObject subtypes, eg. TrackerHits and Track
- features
 - extension of the object with arbitrary (even non-LCObject) classes
 - extension of single objects or vectors, lists of objects
 - optionally ownership is taken for extension objects (memory management)
 - bidirectional relations between LCObjects
 - one to one
 - one to many
 - many to many

LCIO runtime extensions

```
// a simple int extension
                                                                                extensions and relations
struct Index : LCIntExtension<Index> {} ;
                                                                                identified through a
// a many to many relationship between MCParticles
                                                                               tagging class T
struct ParentDaughter : LCNToNRelation<ParentDaughter,MCParticle,MCParticle>
//..
MCParticle* mcp = dynamic_cast<MCParticle*>( mcpcol->getElementAt(i) );
//..
 mcp \rightarrow ext < Index > () = i; // set an int
 const MCParticleVec& daughters = mcp->getDaughters() ;
 for(unsigned j=0 ; j< daughters.size() ; j++ ){</pre>
   // ---- set biderctional relation
   add_relation<ParentDaughter>( mcp, daughters[j] );
                                                                            for extensions use
                                                                            ext < T > ()
                                                                            for relations use
                                                                            rel<T>
 cout << " myindex = " << mcp->ext<Index> << endl ;</pre>
 ParentDaughter::to::rel_type daulist = mcp->rel<ParentDaughter::to>() ;
 for( ParentDaughter::to::const_iterator idau = daulist->begin();
   idau != daulist->end(); ++idau){
    cout << (*idau)->ext<Index>() << ", ";</pre>
  3
  cout << endl ;
```

Gear

```
<gear>
```

. Example XML file for GEAR describing the LDC detector

GEometry **A**PI for **R**econstruction

- <detectors>
 - <detector id="0" name="TPCTest" geartype="TPCParameters" type <maxDriftLength value="2500."/>
 - <driftVelocity value=""/>
 - <readoutFrequency value="10"/>
 - <PadRowLayout2D type="FixedPadSizeDiskLayout" rMin="386.0" maxRow="200" padGap="0.0"/>

<parameter name="tpcRPhiResMax" type="double"> 0.16 </para
<parameter name="tpcZRes" type="double"> 1.0 </parameter>
<parameter name="tpcPixRP" type="double"> 1.0 </parameter>
<parameter name="tpcPixZ" type="double"> 1.0 </parameter>
<parameter name="tpcPixZ" type="double"> 1.4 </parameter>
<parameter name="tpcIonPotential" type="double"> 0.00000003
</detector>

```
- <detector name="EcalBarrel" geartype="CalorimeterParameters">
<layout type="Barrel" symmetry="8" phi0="0.0"/>
<dimensions inner_r="1698.85" outer_z="2750.0"/>
```

```
<layer repeat="30" thickness="3.9" absorberThickness="2.5"/><layer repeat="10" thickness="6.7" absorberThickness="5.3"/></detector>
```

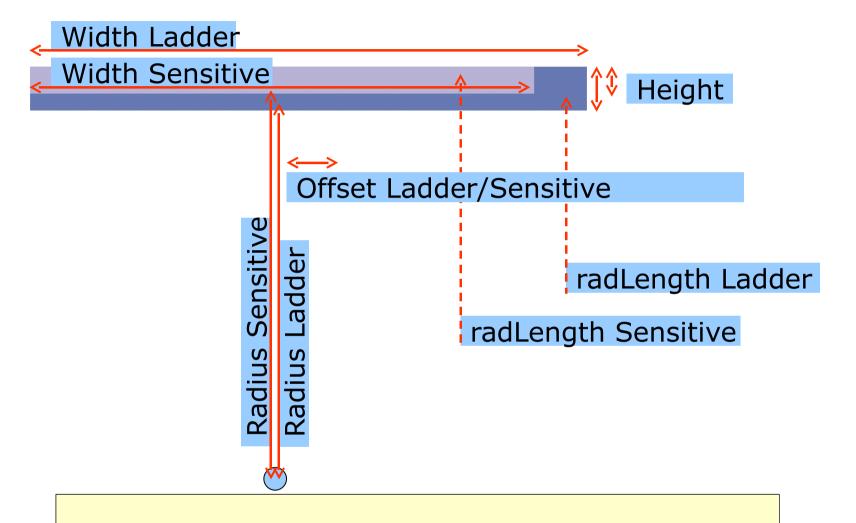
- <detector name="EcalEndcap" geartype="CalorimeterParameters">
<layout type="Endcap" symmetry="2" phi0="0.0"/>

<dimensions inner_r="320.0" outer_r="1882.85" inner_z="2820. <layer repeat="30" thickness="3.9" absorberThickness="2.5"/> <layer repeat="10" thickness="6.7" absorberThickness="5.3"/> </detector>

</detectors> </gear>

compatible with US - compact format

well defined geometry definition for reconstruction that


- is flexible w.r.t different detector concepts
- has high level information needed for reconstruction
- provides access to material properties

abstract interface (a la LCIO)

- concrete implementation based on XML files
- and Mokka-CGA

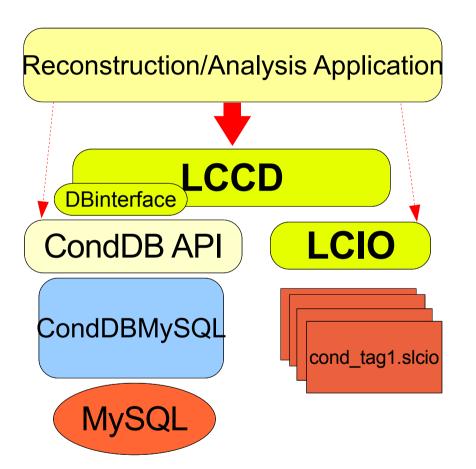
Gear A	PI for VXD/Pixel-d	letectors I
00	Gear: gear::VXDParameters class Reference	
+ ttp://ilcs	oft.desy.de/gear/v00-03/doc/html/classgear_1_1VXDParameters.html	🗿 n 🔍 Google
LCIO doc ILC Software Port	Al Apple (150) v	
virtual const VXDLayerLayout &	getVXDLayerLayout () const=0 The layer layout in the Vertex.	
virtual int	getVXDType () const=0 The type of Vertex detector: VXDParameters.CCD, VXDParameters.CMOS or VXD	Parameters.HYBRID.
virtual double	getShellHalfLength () const=0 The half length (z) of the support shell in mm (w/o gap).	
virtual double	getShellGap () const=0 The length of the gap in mm (gap position at z=0).	
virtual double	getShellInnerRadius () const=0 The inner radius of the support shell in mm.	
virtual double	getShellOuterRadius () const=0 The outer radius of the support shell in mm.	
virtual double	getShellRadLength () const=0 The radiation length in the support shell.	
virtual bool	isPointInLadder (Point3D p) const=0 returns whether a point is inside a ladder	
virtual bool	isPointInSensitive (Point3D p) const=0 returns wheter a point is inside a sensitive volume	
virtual Vector3D	distanceToNearestLadder (Point3D p) const=0 returns vector from point to nearest ladder	
virtual Vector3D	distanceToNearestSensitive (Point3D p) const=0 returns vector from point to nearest sensitive volume	
virtual Vector3D	intersectionLadder (Point3D p, Vector3D v) const=0 returns the first point where a given strainght line (parameters point p and direction v be found.	v) crosses a ladder (0,0,0) is returned if no intersection can
virtual Vector3D	intersectionSensitive (Point3D p, Vector3D v) const=0 returns the first point where a given strainght line (parameters point p and direction v intersection can be found.	v) crosses a sensitive volume (0,0,0) is returned if no

VTX ladder

detailed description of the ladder position allows to describe all ILC vertex detectorsnot yet covered: misalignment

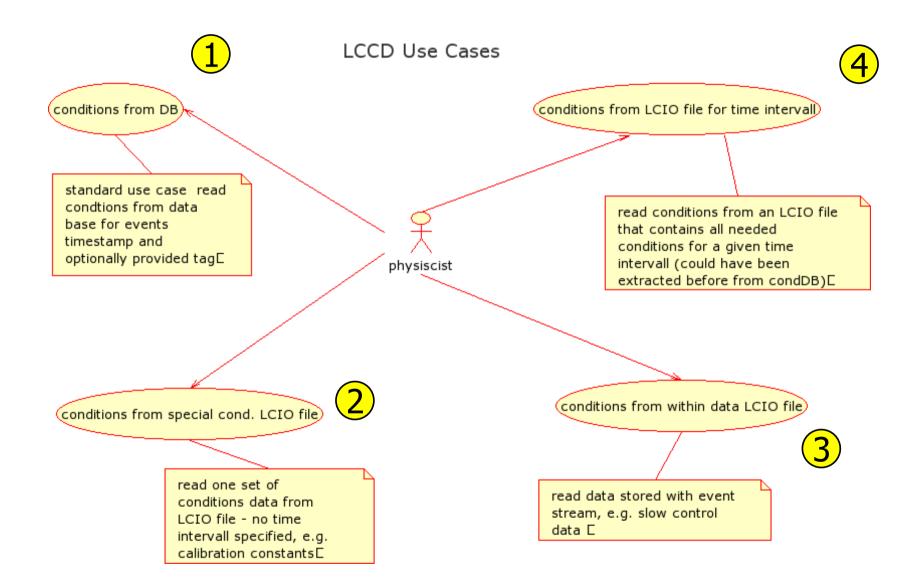
MokkaGear

- extension to Mokka
 - have only one source of of information for describing the detector geometry (however have to start with simulation also for testbeam)
- extract geometry information in drivers when detector is built
- use Gear to create XML files for reconstruction
- currently implemented:
 - TPC, Ecal, Hcal, Lcal, VTX
- released with Mokka 6.3
- NOTE: in planned new system LCGO there will be an independent and standalone geometry descriptionthat is fed into all other tools


Gear for pixel telescope

- need to define API
 - similar to VTX detector

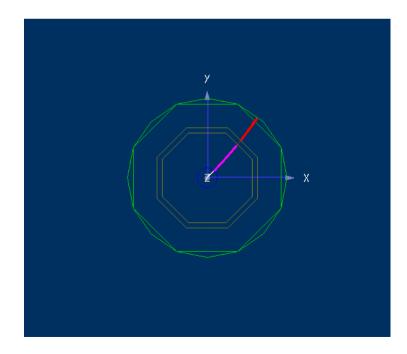
- start today !
- should be designed to be suitable for FTD as well
 - planar r-phi detectors in general
- then need implementation
 - in Gear
 - geometrical functionality
 - xml description, parser
 - Mokka:
 - fill appropriate Gear object to write out xml file for reconstruction and

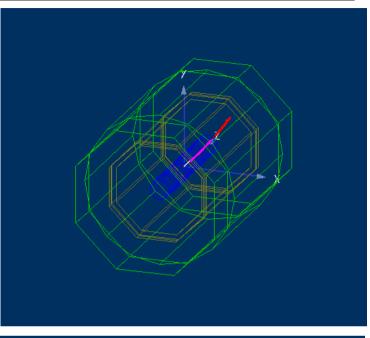

LCCD

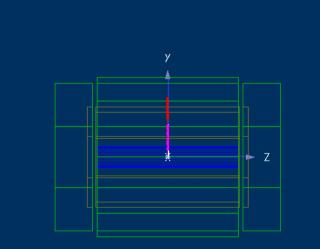
- Linear Collider Conditions Data Toolkit
- Reading conditions data
- from conditions database
- from simple LCIO file
- from LCIO data stream
- from dedicated LCIO-DB file
- Writing conditions data
- tag conditions data
- Browse the conditions database
 - through creation of LCIO files
 - vertically (all versions for timestamp)
 - horizontally (all versions for tag)

LCCD is used by Calice and TPC groups for the conditions data of the ongoing testbeam studies

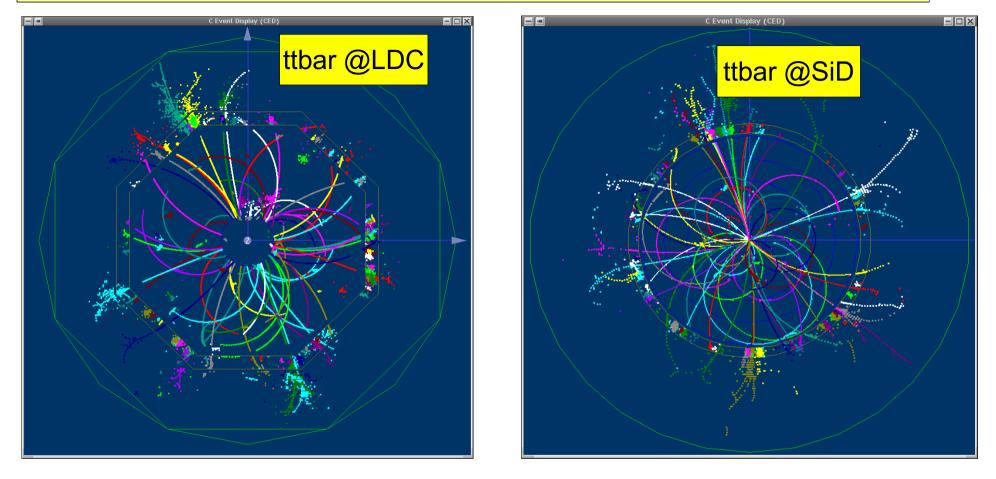
LCCD Use Cases




LCCD for Pixeltelescope


- the advantage of LCCD is transparent access to conditions data (as LCIO collections, e.g. in Marlin) regardless of the actual source
- possible scenario:
 - start with simple LCIO files
 - eventually install a centrally managed conditions data base and import existing data form LCIO files
 - code will be unchanged (only steering)
- NB: maintaining a (conditions) data base is not an entirely trivial task needs dedicated manpower !
 - not covered by LCCD
 - should learn from calice experience !

CED Event display


- OpenGL (glut) based event display
- 3D view, rotate, zoom, shift,...
- supports various layers
- integrated with MARLIN and GEAR

CED Event display II

can easily be adapted for testbeams

other Event displays

- CED is fast and easy to adapt for any displaying purpose, however it is not a full event display yet:
 - no picking
 - somewhat cumbersome handling through keystrokes
 - -> needs further development (volunteers ?)
- WIRED/JAS3 full blown event display (knows LCIO)
 - written in Java (rather slow on Linux)
- Calice and TPC testbeams have their own online event displays
 - -> somewhat unfortunate situation
 - -> needs discussion and agreement, maybe at Orsay workshop !

your input is needed please do not write yet another event display !

Histograming

- general agreement not to (explicitly) use root in ILC core software !
- core software (MarlinReco) uses AIDA for histogramming (http://www.freehep.org/AIDA)
 - allows decision about histograming tool to be made at link time, e.g.
 - RAIDA implementation based on root
 - not fully implemented but standard histograms and ntuples work fine
- others: JAIDA, OpenScientist, Pi, PAIDA,...
- AIDA in Marlin is very simple to use, see \$MARLIN/example/mymarlin/src/MyProcsessor.cc

example: AIDA histogram in Marlin

#ifdef MARLIN_USE_AIDA

```
// define a histogram pointer
  static AIDA::ICloud1D* hMCPEnergy ;
 if( isFirstEvent() ) {
   hMCPEnergy =
Π
     AIDAProcessor::histogramFactory(this)->
     createCloud1D( "hMCPEnergy", "energy of the MCParticles", 100 );
  ŀ
 // fill histogram from LCIO data :
  LCCollection* col = evt->getCollection( _colName );
 if( col != 0){
   int nMCP = col->getNumberOfElements() ;
   for(int i=0; i < nMCP ; i++){</pre>
     MCParticle* p = dynamic_cast<MCParticle*>( col->getElementAt( i ) );
     hMCPEnergy->fill( p->getEnergy() ) ;
   }
```

using root directly

- of course one can also use root directly in any Marlin processor
 - however:
 - you have to manage the file(s)
 - one global file one file for every processor ?
 - you create an explicit dependency on root
 - users can not switch to other histograming tools
 - your processors (Kalman-Filtering,...) can not be (easily) integrated in core software tools like MarlinReco
 - **∂** ...

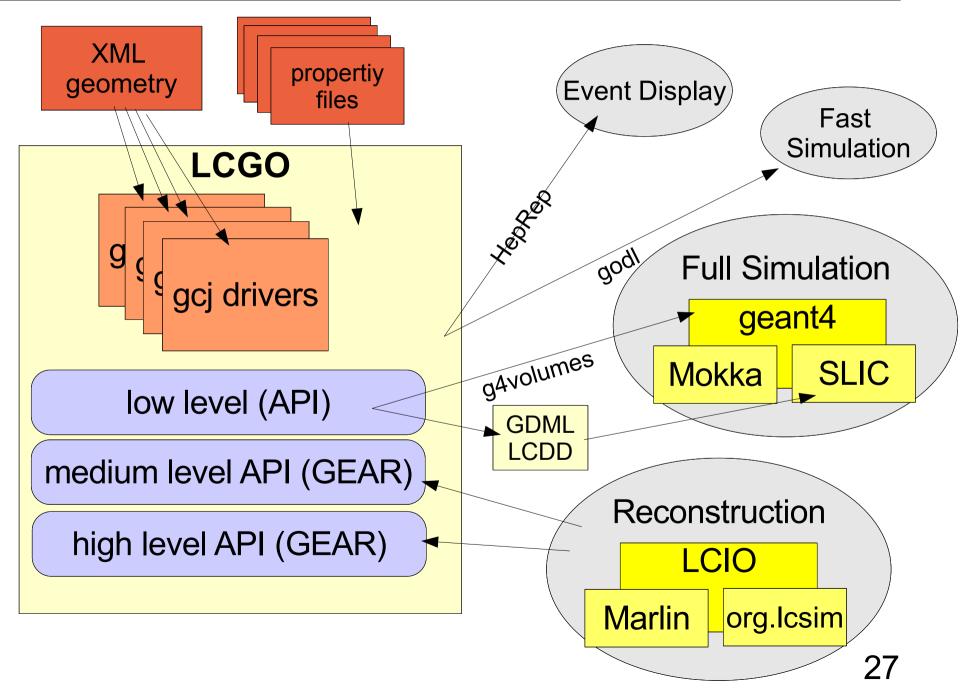
core software ongoing work

ilcinstall build tool

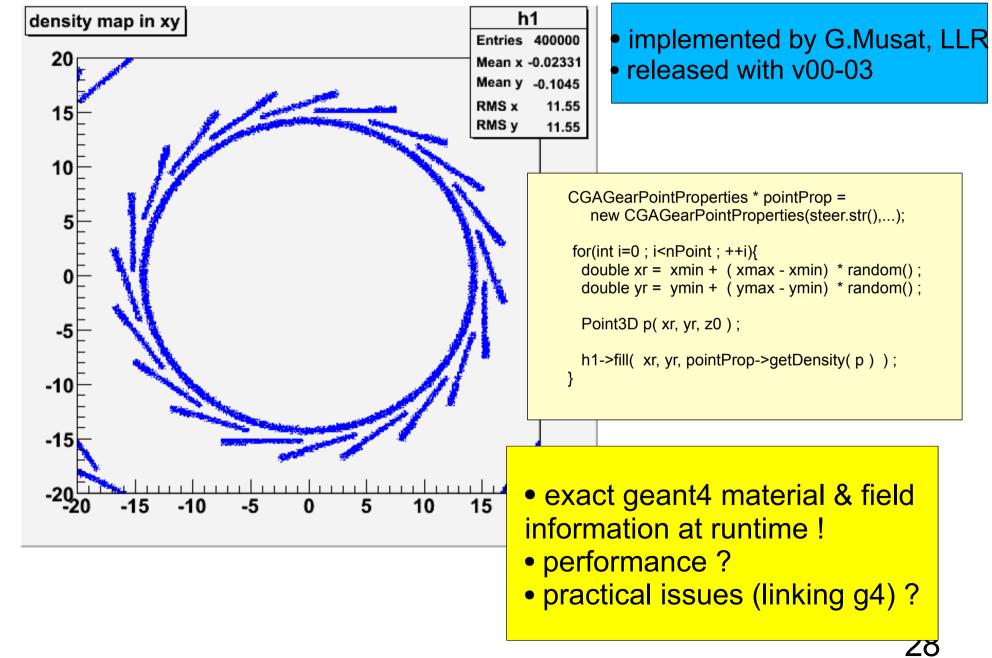
- easy to configure python script that allows complete installation of ILC core software tools
- downloads and builds QT, CLHEP, LCIO, cernlib, Marlin, MarlinRec, MarlinUtil, LCCD, CondDBMySQL,...
- beta version already available (in marlin cvs repository)
- will also help developers make code more compatible with current versions of operating systems, gcc versions,...
- introduce cmake makefiles
 - tool to manage complex software systems (a la gnu autotools)
 - platform independent (almost) makefiles
- improving LCIO
 - bug fixing (thanks to A.Bulgheroni)
 - more flexible (user defined persistent data)
 - direct access to events (extra event loops)

Summary

- the pixel telescope software should be written using common ILC software tools: LCIO, Marlin, LCCD, GEAR
- a lot of what is needed for JRA1 is already there
- need to evaluate (already started) the existing software and identify missing features / issues


 your input and requirements are needed to improve the software !

let's start now


Developing the ILC software framework is an iterative procedure. By using common tools you will contribute to improve it

Backup Slides

LCGO implementation prelim.

CGAGear

ILC software used in testbeams

- CALICE PPT-testbeam (now at CERN)
 - usage of LCIO, Marlin, Gear, LCCD
 - specific extensions developed by CALICE
- TPC prototypes
 - usage of LCIO, Marlin, Gear, (LCCD planned)
 - special raw data classes for Tracker hits in LCIO
 - Gear geometry description of TPC prototype
- VTX prototypes
 - usage of LCIO, Marlin, Gear
 - development of VTX geometry definition in Gear

CondDBMySQL

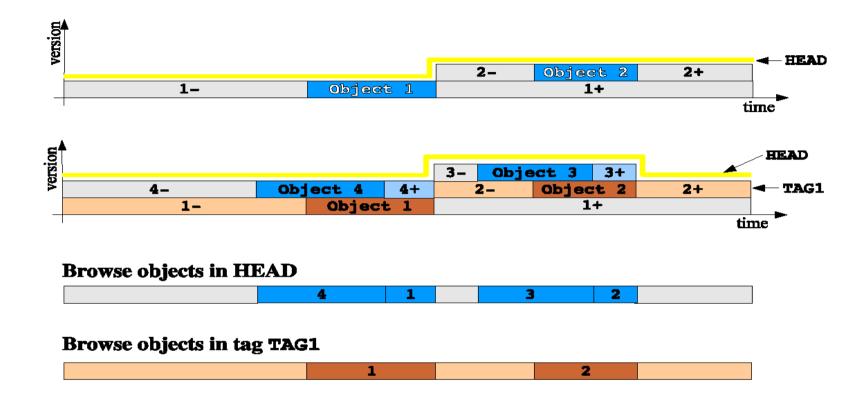


Figure 3: tagging and browsing example in the ConditionsDB mySQL's implementation.

- full tagging and validity time mechanism
- developed for ATLAS by Lisbon group
- will be replaced by COOL (transparent to
- users of LCCD)

some LCGO planned features

- extended GEAR interface (medium and high level)
 - tracking (and clustering PFA)
 - average material volumes
 - intersection with 'next' volume
 - <mark>∘ dE/dx</mark>
 - field maps
 - access to volumes
 - extensions of detectors (a la gear)
 - e.g. #layers, thickness, width,...

- material database
- field maps
- properties (sampling fractions)
- readout properties
 - cellId <-> position
 - cellid range (noise simulation)
 - cell sizes
 - neighbors
- Vector and Matrix classes ?
 - ThreeVector, Point3D
 - Planes, cylinders, … ?
 - FourVector
 - SymMatrix (covariances)

</detector>

</layers>

</layer>

<layer nLadders="22" phi0="0.00"> <ladder radius="60.00" width="16.0" length="100" heigth="0.20" offset="2.0" radLength="8.07"/> <sensitive radius="60.15" width="14.0" length="100" heigth="0.05" offset="0.0" radLength="93.63"/>

</layer>

<ladder radius="48.00" width="16.0" length="100" heigth="0.20" offset="2.0" radLength="8.07"/> <sensitive radius="48.15" width="14.0" length="100" heigth="0.05" offset="0.0" radLength="93.63"/>

<layer nLadders="16" phi0="0.00">

</layer>

<layer nLadders="12" phi0="0.00"> <ladder radius="37.00" width="16.0" length="100" heigth="0.20" offset="2.0" radLength="8.07"/> <sensitive radius="37.15" width="14.0" length="100" heigth="0.05" offset="0.0" radLength="93.63"/>

</layer>

<ladder radius="26.00" width="24.0" length="100" heigth="0.20" offset="2.0" radLength="8.07"/> <sensitive radius="26.15" width="22.0" length="100" heigth="0.05" offset="0.0" radLength="93.63"/>

<layer nLadders="8" phi0="0.00">

</layer>

<ladder radius="15.00" width="16.0" length="100" heigth="0.20" offset="2.0" radLength="8.07"/> <sensitive radius="15.15" width="14.0" length="100" heigth="0.05" offset="0.0" radLength="93.63"/>

<layer nLadders="8" phi0="0.00">

<layers>

```
<shell innerRadius="75.00" outerRadius="80.00" length="300.00" radLength="12.00"/>
```

VTX XML description

<type="CCD"/>

```
<detector name="VertexDetector" geartype="VXDParameters">
```

<detectors>

```
Frank Gaede, JRA1 Core Software, JRA1 SW Meeting, Mar. 30, 2007
```

Gear API for VXD/Pixel-detectors II

► C	+ 🏽 http://ilcsof	ft.desy.de/gear/v00	J-03/doc/html/classg	gear_1_1VXDLayerLayout.ht	۲	S ^ Q- Google	
LCIO doc	ILC Software Portal						
	getNLayers () con: The total number of						
	getNLadders (int land the number of ladde			g starts at 0 for the layer clo	osest to IP.		
virtual double	getPhi0 (int layerly The angle phi0 for a	ndex) const=0 straight line conne	cting IP and ladder per	ərpendicular to ladder.			
virtual double	getLadderRadLeng The radiation length			layerIndex - layer indexing s	starts at 0 for the layer	closest to IP.	
	getSensitiveRadLe			-layer indexing starts at 0 f	for the layer closest to	IP.	
virtual double	getLadderDistance			er indexing starts at 0 for the	ə layer closest to IP.		
	getLadderThicknes The thickness in mn			exing starting at 0 for the lay	/er closest to IP.		
virtual double	getLadderOffset (in The offset of the lad	nt layerIndex) con Ider measured from	st=0 space point perpendi	icular to z and perpendicula	r to connecting line IP-	ladder to middle of ladder in mm (e.g.	
virtual double	getLadderWidth (in The width of the lade			verIndex - layer indexing star	rting at 0 from the laye	r closest to IP.	
	getLadderLength (The length of the lac			yer layerIndex - layer indexir	ing starting at 0 from th	ne layer closest to IP.	
virtual double	getSensitiveDistan The distance of sens		:) const=0 rs in layer layerIndex fr	from the IP.			
virtual double	getSensitiveThick The thickness in mn	ness (int layerInde m of the sensitive a	ex) const=0 area in ladders in layer l	r layerIndex.			
	getSensitiveOffset The offset of the ser area in mm (e.g.			ce point perpendicular to z a	and perpendicular to co	onnecting line IP-sensArea to middle of sensi	itive
virtual double	getSensitiveWidth	(int layerIndex) c	const=0				