

PH/LHC CERN Seminar

11 October 2011 CERN, Geneva Switzerland V.Chiochia (Zürich University)

On behalf of the CMS Collaboration

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH

In this seminar:

- 1. CMS detector performance
- 2. Search for rare B decays
- 3. B quark production
- 4. Outlook

CMS Detector

CMS Tracker

- CMS is equipped with a full-silicon tracking detector
 - Three layers and two disks of pixel sensors (~66M channels)
 - Ten barrel layers and 3+9 endcap wheels of strip sensors (~10M channels)
 - Pseudorapidity coverage up to 2.4. Transverse momentum resolution 2-3%.

Silicon pixel detector

- ~98% operational during data taking. Hit efficiency >99%
- Excellent understanding of detector resolution:
 - Hit, impact parameter, vertices

CMS-PAS-TRK-10-005 Eur.Phys.J. C70 (2010) p.1165

Silicon micro-strips

Muon ID performance

CMS-PAS-MUO-10-002

- Muon identification based on outside-in matching of muon segments with tracks in the inner tracks, "Global muons"
- Fraction of muons from Pions, Kaons and Protons verified with resonance decays
- Muon efficiency reconstruction verified with a "tag-and-probe" technique on J/ψ decays

Trigger

- Specialized muon triggers deployed for heavy flavor measurements
- Exploit mass, vertex and momentum constraints

Why searching for $B_{s,d} \rightarrow \mu^{+}\mu^{-}$?

Decays highly suppressed in SM

- Forbidden at tree level
- b →s(d) FCNC transitions only through *Penguin* or *Box* diagrams
- Helicity suppressed by factors of (m_μ/m_B)²

Standard Model predictions

- $\mathcal{E}(B_s \to \mu \mu) = (3.2 \pm 0.2) \times 10^{-9}$
- $\mathcal{E}(B^0 \rightarrow \mu \mu) = (1.0 \pm 0.1) \times 10^{-10}$

Sensitivity to new physics

MSSM Br proportional to (tanβ)⁶

Event characteristics

Signal characteristics:

- Two muons from a single decay vertex
- Mass compatible with B_s (or B⁰)
- Well reconstructed secondary vertex
- Dimuon momentum aligned with flight direction

Background sources:

- Two semi-leptonic B decays (gluon splitting)
- One semi-leptonic B decay + misidentified hadron
- Rare B decays (e.g. B_s→KK, B_s→K⁻μ⁺ν)

Key ingredients:

Good di-muon vertex, correct B mass assignment, momentum pointing to interaction point

Signal event selection

All selection criteria optimized for limit sensitivity before unblinding of signal window

- Mass window requirement:
 - Resolution: 36 (85) MeV in barrel (endcap)
 - 5.3-5.45 (5.2-5.3) GeV for B_s (B⁰)
- Selection cuts differentiated for **barrel** (both $|\eta(\mu)|$ <1.4) and **endcap** region (all other μ pairs)
- Primary vertex consistent with p(B) direction
- Secondary vertex fit χ^2 /dof<1.6
- Decay length and flight direction:
 - $l_{3D}/\sigma(l_{3D})>15$ (20), $\alpha_{3D}<50$ (25) mrad
- Single muon and B candidate selection:
 - p_T(μ)>4.5 or 4.0 GeV, p_T(B)>6.5 GeV

Signal event selection: isolation

Relative isolation of muon pairs

- Cone with ΔR=1 around di-muon momentum
- Include all tracks with p_T>0.9 GeV from same PV or d_{CA}<500 μm from B vertex
- Require isolation larger than 75%
- Distance of closest approach of any track w.r.t. B vertex larger than 150 μm (endcap region only)

Isolation =
$$\frac{p_{\rm T}(\mu^{+}\mu^{-})}{p_{\rm T}(\mu^{+}\mu^{-}) + \sum_{\Delta R < 1} p_{\rm T}} > 75\%$$

Branching ratio calculation

- Branching ratios calculated w.r.t. normalization channel $B^+ \rightarrow J/\psi(\mu\mu)K^+$
 - Many systematic uncertainties cancel in ratio
 - No need for absolute luminosity and b-quark cross section
 - Large B⁺ yield and well known branching ratio to J/

 K⁺ (3% uncert.)
 - Ratio of fragmentation fractions, f_u/f_s, from PDG (13% uncert.)

Background estimates

Combinatorial background:

- Measured in data from B mass sidebands
- Interpolate to signal region under flat-shape assumption

Peaking backgrounds:

- B→hh backgrounds with two muons from misidentified hadrons
- Muon mis-ID in data from $K_s \rightarrow \pi \pi$, $\phi \rightarrow KK$, $\Lambda \rightarrow p\pi$ decays
- MC background samples with mis-ID probability from data
- B⁰ search more affected than B_s because of lower mass

Systematic uncertainties

Fragmentation fractions from PDG	13%
Background estimation: loosen cuts, invert isolation cut	4%
Signal acceptance: vary b-quark production processes	4%
Signal selection efficiency: cut-by-cut data/MC differences	8%
Track momentum scale: from J/ψ resonance	3%
Normalization selection efficiency: cut-by-cut data/MC differences	5%
Hadron tracking efficiency: from D* decays	4%
Normalization yield: vary fit functions	5%
Muon identification efficiency ratio: data/MC differences	5%
Trigger efficiency ratio: data/MC differences	3%
Total	19%

Results with 1.1 fb⁻¹

arXiv:1107.5834 Accepted by PRL

Consistent with expectation from background and SM signal in all four channels

	Barrel		Endcap	
	$ m B^0 ightarrow \mu^+ \mu^-$	$ m B_s^0 ightarrow \mu^+ \mu^-$	$\mathrm{B^0} ightarrow \mu^+ \mu^-$	$ m B_s^0 ightarrow \mu^+\mu^-$
$\varepsilon_{ ext{tot}}$	$(3.6 \pm 0.4) \times 10^{-3}$	$(3.6 \pm 0.4) \times 10^{-3}$	$(2.1 \pm 0.2) \times 10^{-3}$	$(2.1 \pm 0.2) \times 10^{-3}$
$N_{ m signal}^{ m exp}$	0.065 ± 0.011	0.80 ± 0.16	0.025 ± 0.004	0.36 ± 0.07
$N_{\rm comb}^{\rm exp}$	0.40 ± 0.23	0.60 ± 0.35	0.53 ± 0.27	0.80 ± 0.40
$N_{ m peak}^{ m exp}$	0.25 ± 0.06	0.07 ± 0.02	0.16 ± 0.04	0.04 ± 0.01
$N_{ m obs}$	0	2	1	1

Decay	Expected (95% CL)	Observed (95% CL)	Background-only p value
$B_s \rightarrow \mu^+ \mu^-$	1.8×10 ⁻⁸	1.9×10 ⁻⁸	11% (1.2σ)
$B^0 \rightarrow \mu^+ \mu^-$	4.8×10 ⁻⁸	4.6×10 ⁻⁹	40% (0.3σ)

Candidate event

CMS+LHCb combination

- LHCb analysis released at EPS 2011, based on 370 pb⁻¹
 - Upper limit = 1.6×10⁻⁹ at 95% CL (1.5×10⁻⁹ combining with 2010 result)
- CMS and LHCb upper limits combined
 - Using recent LHCb f_s/f_u value (8% uncert.)
 - Assumed 100% correlated between 48 LHCb bins and 2 CMS bins for signal expectation
 - p-value for background only = 8%

Implications on new physics

- Relevant impact on various SUSY scenarios at large tanβ
 - For large tanβ (50) can extend limits from direct searches in some SUSY models

Closing fast?

SM branching ratio within reach by early 2012

Improved sensitivity may be expected by replacing cut&count with MV analysis

Simple scaling of current limits with no improvement in sensitivity!

5-7 times EPS11 luminosity needed for 3σ exclusion of SM prediction with CMS+LHCb combination (4.3 fb⁻¹ already on tape!)

3. B quark production

4. Outlook

B-quark production at LHC

- Excellent test bench for perturbative QCD and Monte Carlo models
 - Tensions between data and theory gradually resolved at hadron colliders with lower c.o.m. energy (Tevatron, HERA)
 - Measurements at LHC have smaller uncertainties than NLO QCD predictions
- B-quark jets are a frequent background to searches for new physics
 - Rate and dynamics of b-quark production needs to be well measured and reproduced by MC tools
 - Topology of final-state b quarks (e.g. collinear vs. back-to-back production) relevant for designing SM rejection tools for physics searches
- CMS detector is well suited for b-quark production measurements, thanks to its excellent tracking, vertexing and muon identification, combined with a flexible trigger system

Production processes in p-p

Flavour creation (FCR)

Flavour excitation (FEX)

Gluon splitting (GSP)

- 2→2 processes:
 - Flavour creation: gluon fusion and qq annihilation
- 2→3 processes:
 - Flavour Excitation: bb from the proton sea, only one b participates to the hard scatter, asymmetric transverse momentum for the two b-quarks
 - <u>Gluon splitting</u>: $g \rightarrow bb$ in initial or final state, b at low pT and close in the azimuthal angle ($\Delta \phi$)
 - Real and virtual corrections to Flavour creation

2 to 3 processes dominant at the LHC!

B-quark identification

Identification with semi-leptonic decay into muons

- Low momentum (3 GeV) single-muon trigger thresholds at CMS startup
- Probe inclusive beauty production at low momentum
- Both single and di-muon final states measured

JHEP 1103 (2011) 090 CMS-PAS-BPH-10-008 CMS-PAS-BPH-10-015

Secondary vertex identification

- Exploit high precision of pixel tracker and long B hadrons lifetimes
- Efficient secondary vertex reconstruction for E_Tiet>20 GeV
- Excellent for b-jet studies at larger momenta
- Angular correlation studies with inclusive secondary vertices

CMS-PAS-BPH-10-009 JHEP 1103 (2011) 136

Fully reconstructed B-hadron decays

- Utilize J/ψ+X decay channels with J/ψ→μ⁺μ⁻
- $B^+ \rightarrow J/\psi K^+$, $B^0 \rightarrow J/\psi K_s$, $B_s \rightarrow J/\psi \varphi$ differential cross sections

PRL 106, 112001 (2011) PRL 106, 252001 (2011) PRD 84, 052008 (2011)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH

Semileptonic decays

- Exploit kinematics of semi-leptonic decay due to heavy quark mass
 - Muon transverse momentum w.r.t. jet on average larger for b-quark
 - Fraction of events with b-decays extracted from a fit with simulated p_T^{rel} templates

events/bin

Differential cross sections

$$\begin{split} \sigma &= 1.32 \pm 0.01 (\mathrm{stat}) \pm 0.30 (\mathrm{syst}) \pm 0.15 (\mathrm{lumi}) \mu \mathrm{b} \quad \text{Measured visible cross section} \\ \sigma_{\mathrm{PYTHIA}} &= 1.8 \, \mu \mathrm{b} \\ \sigma_{\mathrm{MC@NLO}} &= 0.95^{+0.41}_{-0.21} (\mathrm{scale}) \pm 0.09 (m_{\mathrm{b}}) \pm 0.05 (\mathrm{pdf}) \mu \mathrm{b} \quad \text{($\mu \text{F}=\mu \text{R}=p_{\text{T}}$)} \end{split}$$

Experimental uncertainties (15-20%) dominated by modeling of fake muons and underlying event

MC@NLO: larger discrepancies at low p_T^μ and central region

Di-muon cross section

Experimental uncertainties (11%) dominated by muon efficiency, MC templates shapes and fit

B jet with secondary vertices

- By tagging B jets the cross section measurement can be extended to large transverse momenta
 - Exploit secondary vertex (SV) reconstruction with silicon pixel detector
 - ◆ 50-60% tagging efficiency for p_T=100 GeV with 0.1% background contamination
- Different systematic uncertainties w.r.t. semi-leptonic decays

B jets: results

- Experimental uncertainties (~20%) dominated by b-tagging efficiency and jet energy scale
- MC@NLO uncertainties dominated by scale variations (+40%,-25%) and b-quark mass (+17%,-14%)

- Generally good agreement with Pythia above 40 GeV
- Shape differences with MC@NLO at large p_T and forward region

Data / NLO theory

B jets with muons

Independent method with muon trigger and SV tagged jets B fraction=(86±5)%, from muon p_T^{rel} fit

$$p_T^{jet}>30 \text{ GeV}, |y^{jet}|<2.4 \text{ (muon extrapolated)}$$

$$\sigma(\text{pp} \to \text{b} + X) = 2.14 \pm 0.01(\text{stat}) \pm 0.41(\text{syst}) \pm 0.09(\text{lumi}) \, \mu\text{b},$$

$$\sigma_{\text{MC@NLO}} = 1.83^{+0.64}_{-0.42}(\text{scale}) \pm 0.05(\textit{m}_{\text{b}}) \pm 0.08(\text{pdf}) \, \mu\text{b}.$$

$B^+ \rightarrow J/\psi(\mu\mu) K^+$

Signal extracted from simultaneous fit to invariant mass and lifetime distributions

Event Selection:

- **Muons**: $p_T > 3.3$ GeV for $|\eta| < 1.3$; p > 2.9 GeV for $1.3 < |\eta| < 2.2$, $p_T > 0.8$ GeV for $2.2 < |\eta| < 2.4$
- Invariant J/ψ mass from oppositely charged muons, ±150 MeV from nominal mass
- Charged track: p_T>0.9 GeV, at least 4 silicon tracker hits (of which one in pixels)
- About 900 signal candidates from mass and lifetime fit found in 5.8 pb-1
- **Backgrounds**: dominated by prompt and non-prompt J/ ψ production, B \rightarrow J/ ψ K*(892)
- Mass resolution on signal events ~30 MeV, cτ resolution ~30 μm

$B^+ \rightarrow J/\psi(\mu\mu) K^+$

Experimental uncertainties (~7%) dominated by fit PDF shapes and tracking efficiency BF (3.5%) and luminosity (11%) uncertainties not shown in figures

$B^0 \rightarrow J/\psi(\mu\mu) K_s(\pi\pi)$

$B_s \rightarrow J/\psi(\mu\mu) \phi(KK)$

Small SM prediction, can be enhanced by BSM contributions **CMS roadmap**: cross section \rightarrow lifetime difference $\Delta\Gamma$ \rightarrow CP violating phase φ_s

$$\beta_s = arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*)$$

$$\varphi_{s[SM]} = -2\beta_s = (-36\pm2) \ mrad$$

$B_s \rightarrow J/\psi(\mu\mu) \phi(KK)$

Event selection:

- Muons: Same J/ψ cuts as B⁺ and B⁰ analyses
- Kaons: φ candidates from oppositely charged tracks with p_T>0.7 GeV, requiring 5 tracker hits and M(KK)=M(φ)±10 MeV
- About 550 signal candidates in 40 pb⁻¹ from combined mass and lifetime fit

$B_s \rightarrow J/\psi(\mu\mu) \phi(KK)$

Experimental uncertainties (~11%) dominated by tracking efficiency (9%) and luminosity (4%)

 $9.39 \pm 2.82 (B.F.)$ nb

MC@NLO

Pythia

Summary of exclusive decays

CMS b cross sections

All measurements above NLO but in agreement within uncertainties

B-hadron angular correlations

Questions:

- What fraction of the b-quark cross section is given by collinear b pair production?
- How does this fraction evolve with the hardness of the scattering process?

Experimental problem:

- Measurements based on tagged jets have finite resolution due to jet clustering sizes
- Introducing a new measurement technique:
 - Reconstruct B-hadron momentum from primary and secondary vertices
 - Secondary vertex finder seeded by high IP tracks, jet independent
 - Tertiary vertices from chain decays (B→C) merged into a single B candidate

B-hadron angular correlations

- Angular separation measured ten times more precisely than bin size allowed by available statistics
- Pythia MC describes very well vertex kinematic variables
 - Used for efficiency and purity correction
 - ΔR and Δφ dependence of secondary vertex finding efficiency cross checked with data-driven technique based on event mixing

Angular correlations: results

MC normalized to shaded region for shape comparison in the collinear BB region

Ratio of collinear over back-to-back region

- Sizable fraction of total BB cross section from collinear B-hadron pairs
- Fraction of collinear BB production increases with leading jet p_T
- Data points between Pythia and Madgraph MC.
- MC@NLO and CASCADE below the data

In this presentation

- 1. CMS detector performance
- 2. Search for rare B decays
- 3. B quark production
- 4. Outlook

- Many published and preliminary results on heavy flavor physics from CMS
 - Competitive (best) upper limit on B_s (B_d) branching ratio to dimuons
 - Several measurements of B quark production in inclusive and exclusive channels
 - Angular correlation measurements help disentangle underlying production processes
 - Not shown today: Quarkonium production, searches for exotic states
- Large data samples from 2011/12 data taking will disclose new opportunities
 - Rare decays (e.g. $B_{s,d} \rightarrow \mu \mu$, $B \rightarrow K^* \mu \mu$) and CP violation (e.g. $B_s \rightarrow J/\psi \phi$)
 - Quarkonium polarization measurements
 - Heavy baryon production and polarization (e.g. Λ_b , Σ_b)
 - Exotic states in the bottomonium sector
- Challenges ahead:
 - Trigger bandwidth optimization at high instantaneous luminosities

BACKUP

B_s→μμ: Selection efficiency

- Validation of MC simulation performed with two exclusive decays
 - $B_s \rightarrow J/\psi(\mu^+\mu^-)\phi(KK)$
 - B⁺ \rightarrow J/ $\psi(\mu\mu)$ K⁺
- Signal and normalization efficiencies from simulation
 - Signal efficiency: 0.4% (0.2%) in barrel (endcap)
 - Normalization efficiency: 0.08% (0.03%) in barrel (endcap)
- Good agreement with simulation after sideband subtraction
 - Residual differences adopted as systematics

Secondary vertices

- Based on primary vertex finder tool applied to tracks in a jet
- Commissioning of secondary vertex reconstruction shows very good understanding of discrimination variables
 - Track multiplicity
 - Flight distance significance
- Invariant mass of tracks associated to the vertex is a useful tool to verify sample purity after tagging

CMS-PAS-BTV-10-001

Cross section calculation

b-quark templates from MC, validated with b-enriched data sample

f_b from fit (46±1)%

Efficiencies (ϵ):

Muon trigger ~82% (Data) Muon reconstruction ~97% (MC) Muon-jet association ~77% (MC)

Luminosity (£): 85 nb⁻¹

Cross section definition
$$\sigma \equiv \sigma(pp \to b + X \to \mu + X', p_{\perp}^{\mu} > 6 \, \text{GeV}, |\eta^{\mu}| < 2.1) = \frac{N_b^{\text{data}}}{\mathcal{L} \, \varepsilon}$$

Comparison with QCD

Muon cross section: systematics

source	uncertainty
Trigger	3–5 %
Muon reconstruction	3 %
Tracking efficiency	2 %
Background template shape uncertainty	1–10 %
Background composition	3–6 %
Production mechanism	2–5 %
Fragmentation	1–4 %
Decay	3 %
MC statistics	1–4 %
Underlying Event	10 %
Luminosity	11 %
total	16–20 %

Cross section calculation

Cross section definition

$$\frac{d^2 \sigma_{\text{b-jets}}}{d p_T d y} = \frac{N_{\text{tagged}} f_b C_{\text{smear}}}{\epsilon_{\text{jet}} \epsilon_b \Delta p_T \Delta y \mathcal{L}}$$

Tagged sample purity f_b from MC and fit to secondary vertex mass ~73%

Tagging efficiency ϵ_b from MC validated with data-driven method $\epsilon_{data}/\epsilon_{MC}=0.98\pm0.08(stat)\pm0.18(syst)$

$$\epsilon_b^{\text{data}} = \frac{f_b^{\text{tag}} \cdot N_{data}^{\text{tag}}}{f_b^{\text{tag}} \cdot N_{data}^{\text{tag}} + f_b^{\text{untag}} \cdot N_{data}^{\text{untag}}}$$

C_{smear} = unfolding correction [CMS PAS QCD-10-011]

Luminosity (£): 60 nb⁻¹

Ratio to inclusive jets

- Jet energy corrections and luminosity systematic uncertainties cancel out
- Pythia in agreement over the measured range
- Indicates shape discrepancies with NLOJet++/MC@NLO ratio

Inclusive jet measurement: CMS PAS QCD-10-011

B jets: systematic uncertainties

Charmed mesons

$X(3872) \rightarrow J/\psi \pi^- \pi^+$

- State discovered by Belle in 2003 and later confirmed by BaBar, CDF and D0
- Quantum numbers not well established and production mechanism unknown
 - From CDF angular analysis: J^{PC}=1++ or 2-+.
 - J=2 disfavored by radiative decays
 - Molecular D-D state?
- State clearly observed in CMS data
 - We measured the yield ratio w.r.t. ψ(2S)
 - J/ψ candidates combined with two oppositely charged tracks with p_T>0.7 GeV
 - Next steps: differential cross section and determination of prompt/non-prompt fractions

$$R = \frac{\sigma(pp \to X(3872) + \text{anything}) \times BR(X(3872) \to J/\psi\pi^{+}\pi^{-})}{\sigma(pp \to \psi(2S) + \text{anything}) \times BR(\psi(2S) \to J/\psi\pi^{+}\pi^{-})}$$
$$R = 0.087 \pm 0.017(stat.) \pm 0.009(syst.)$$

CMS-PAS-BPH-10-018

χ_c observation in radiative decays

- Observation of χ_c states in radiative decays to $J/\psi \gamma$
 - Low momentum photons reconstructed with conversion in the silicon tracker
 - Excellent mass resolution. Can resolve 45 MeV mass separation.
 - Next steps: χ_{c2}/χ_{c1} cross section ratio vs. p_T

CERN-CMS-DP-2011-011