
11/07/2011 LPCC workshop Rene Brun 1

Project context

 La Mainaz meeting in Jan 2010->Better synergy between
G4&ROOT teams in PH/SFT.

 Many discussions between April and October 2010.

 In November 2010, new Project approuved with more focus on
medium and long term.

 First conclusions rapidly reached in January.

 First prototype with important conclusions presented in July.

 Main work so far by Andrei Gheata, Federico Carminati and me.

 Discussions with Atlas (Andi Salzburger) and OpenLab
(Alfio/Sverre).

11/07/2011 LPCC workshop Rene Brun 2

Starting Assumptions

 The LHC experiments use extensively G4 as main
simulation engine. They have invested in validation
procedures. Any new project must be coherent with their
framework.

 One of the reasons why the experiments develop their own
fast MC solution is the fact that a full simulation is too slow
for several physics analysis. These fast MCs are not in the
G4 framework (different control, different geometries, etc),
but becoming coherent with the experiments frameworks.

 Giving the amount of good work with the G4 physics, it is
unthinkable to not capitalize on this work.

11/07/2011 LPCC workshop Rene Brun 3

My December talk in a thumbnail

 Increase synergy between G4&ROOT teams.

 Particle stack outside G4.

 Virtual transporters with concrete instances for fast

or/and full simulation, reconstruction,visualization.

 Investigation of parallel architectures.

11/07/2011 LPCC workshop Rene Brun 4

New GEANT in one picture

11/07/2011 LPCC workshop Rene Brun 5

Event

Generators

I

O

Abstract

transporter

Stack

manage

r

Math
GUI

Abstract

Phys&X-

sec
GEANT

Event loop and stacking

11/07/2011 LPCC workshop Rene Brun 6

User

application

Push

primaries

Stack

Stack

manager

Current

transporter

Loop over

particles

Geometry

navigator

Field
Virtual

transporter

Physics

processes

Push

secondaries

Step

manager

Step actions for

selected process
User step

actions

Current

transporter

Fast and Full MonteCarlo

 We would like an architecture (via the abstract

transporters) where fast and full MC can be run

together.

 To make it possible one must have a separate particle

stack.

 However, it was clear from the very beginning in

January that the particle stack depends strongly on the

constraints of parrallelism. Multiple threads cannot

update efficiently a tree data structure.

11/07/2011 LPCC workshop Rene Brun 7

Findings in January

 Decide to concentrate on a very small prototype to test our
main ideas.

 No need to import G4 (at least for some time)

 Understanding the geometry of our detectors. We have the
real detector geometry of 35 experiments (LHC, LEP,
Tevatron, Hera, Babar, etc).

 We rapidly concluded that MASSIVE changes are required
in the current simulation strategy to take advantage of the
new parallel architectures.

 In this talk, I will discuss mainly the impact of parrallelism.

11/07/2011 LPCC workshop Rene Brun 8

Conventional Transport

11/07/2011 LPCC workshop Rene Brun 9

o o

o

o

o
o

o

o

o

o

o o

o

o

o
o

o
o

o
o

o

o

T1

T3

T2

o

o

o

o
o

o o

o

o

o

o

o o
o

o

o
o

o

o

o
T4

Each particle tracked

step by step through

hundreds of volumes

when all hits for all

tracks are in

memory summable

digits are computed

Analogy with car traffic

11/07/2011 LPCC workshop Rene Brun 10

Conventional Transport

 At each step, the navigator *nav has the state of the

particle x,y,z,px,py,pz, the volume instance volume*,

etc.

 We compute the distance to the next boundary with

something like

 Dist = nav->DistoOut(volume,x,y,z,px,py,pz)

 Or the distance to one physics process with, eg

 Distp = nav->DistPhotoEffect(volume,x,y,z,px,py,pz)

11/07/2011 LPCC workshop Rene Brun 11

11/07/2011 LPCC workshop Rene Brun 12

parallelism

11/07/2011 LPCC workshop Rene Brun 13

From a recent

talk by Intel

If you trust Intel

11/07/2011 LPCC workshop Rene Brun 14

If you trust Intel 2

11/07/2011 LPCC workshop Rene Brun 15

Current Situation

 We run jobs in parallel, one per core.

 Nothing wrong with that except that it does not scale in case
of many cores because it requires too much memory.

 A multithreaded version may reduce (say by a factor 2 or 3)
the amount of required memory, but also at the expense of
performance.

 A multithreaded version does not fit well with a hierarchy of
processors.

 So, we have a problem, in particular with the way we have
designed some data structures, eg HepMC.

11/07/2011 LPCC workshop Rene Brun 16

Can we make progress?

 We need data structures with internal relations only.

This can be implemented by using pools and indices.

 When looping on collections, one must avoid the

navigation in large memory areas killing the cache.

 We must generate vectors of reasonable size well

matched to the degree of parallelism of the hardware

and the amount of memory.

 We must find a system to avoid the tail effects

11/07/2011 LPCC workshop Rene Brun 17

tails, tails, tails

11/07/2011 LPCC workshop Rene Brun 18

11/07/2011 LPCC workshop Rene Brun 19

Tails again

11/07/2011 LPCC workshop Rene Brun 20

A killer if one has to wait the

end of col(i) before

processing col(i+1)
Average number of

objects in memory

New Transport Scheme

11/07/2011 LPCC workshop Rene Brun 21

o o

o

o

o
o

o

o

o

o

o o

o

o

o
o

o
o

o
o

o

o

T1

T3

T2

o

o

o

o
o

o o

o

o

o

o

o o
o

o

o
o

o

o

o
T4

All particles in the same

volume type are

transported in parallel.

Particles entering new

volumes or generated

are accumulated in the

volume basket.

Events for which all

hits are available

are digitized in

parallel

Generations of baskets

 When a particle enters a volume or is generated, it is

added to the basket of particles for the volume type.

 The navigator selects the basket with the highest score

(with a high and low water mark algorithm).

 The user has the control on the water marks, but the

idea that this should be automatic in function of the

number of processors and the total amount of memory

available. (see interactive demo)

11/07/2011 LPCC workshop Rene Brun 22

Analogy with car traffic

11/07/2011 LPCC workshop Rene Brun 23

New Transport

 At each step, the navigator *nav has the state of the

particles *x,*y,*z,*px,*py,*pz, the volume instances

volume**, etc.

 We compute the distances (array *Dist) to the next

boundaries with something like

 nav->DistoOut(volume,x,y,z,px,py,pz,Dist)

 Or the distances to one physics process with, eg

 nav->DistPhotoEffect(volume,x,y,z,px,py,pz,DispP)

11/07/2011 LPCC workshop Rene Brun 24

New Transport

 The new transport system implies many changes in

the geometry and physics classes. These classes must

be vectorized (a lot of work!).

 Meanwhile we can survive and test the principle by

implementing a bridge function like

11/07/2011 LPCC workshop Rene Brun 25

MyNavigator::DisttoOut(int n, TGeoVolume **vol, double *x,..)

{

 for int i=0;i<n;i++) {

 Dist[i] = DisttoOutOld(vol[i],x[i],…);

 }

 }

A better solution

11/07/2011 LPCC workshop Rene Brun 26

Pipeline of

objects

Checkpoint

Synchronization.

Only 1 « gap » every N events

This type of

solution

required

anyhow for

pile-up

studies

A better better solution

11/07/2011 LPCC workshop Rene Brun 27

checkpoints
At each checkpoint we

have to keep the non

finished objects/events.

We can now digitize

with parallelism on

events, clear and reuse

the slots.

11/07/2011 LPCC workshop Rene Brun 28

11/07/2011 LPCC workshop Rene Brun 29

Vectorizing the geometry (ex1)

11/07/2011 LPCC workshop Rene Brun 30

Double_t TGeoPara::Safety(Double_t *point, Bool_t in) const

{

 // computes the closest distance from given point to this shape.

 Double_t saf[3];

 // distance from point to higher Z face

 saf[0] = fZ-TMath::Abs(point[2]); // Z

 Double_t yt = point[1]-fTyz*point[2];

 saf[1] = fY-TMath::Abs(yt); // Y

 // cos of angle YZ

 Double_t cty = 1.0/TMath::Sqrt(1.0+fTyz*fTyz);

 Double_t xt = point[0]-fTxz*point[2]-fTxy*yt;

 saf[2] = fX-TMath::Abs(xt); // X

 // cos of angle XZ

 Double_t ctx = 1.0/TMath::Sqrt(1.0+fTxy*fTxy+fTxz*fTxz);

 saf[2] *= ctx;

 saf[1] *= cty;

 if (in) return saf[TMath::LocMin(3,saf)];

 for (Int_t i=0; i<3; i++) saf[i]=-saf[i];

 return saf[TMath::LocMax(3,saf)];

}

Huge performance

gain expected in this

type of code where

shape constants can

be computed outside

the loop

Vectorizing the geometry (ex2)

11/07/2011 LPCC workshop Rene Brun 31

G4double G4Cons::DistanceToIn(const G4ThreeVector& p,

 const G4ThreeVector& v) const

{

 G4double snxt = kInfinity ; // snxt = default return value

 const G4double dRmax = 100*std::min(fRmax1,fRmax2);

 static const G4double halfCarTolerance=kCarTolerance*0.5;

 static const G4double halfRadTolerance=kRadTolerance*0.5;

 G4double tanRMax,secRMax,rMaxAv,rMaxOAv ; // Data for cones

 G4double tanRMin,secRMin,rMinAv,rMinOAv ;

 G4double rout,rin ;

 G4double tolORMin,tolORMin2,tolIRMin,tolIRMin2 ; // `generous' radii squared

 G4double tolORMax2,tolIRMax,tolIRMax2 ;

 G4double tolODz,tolIDz ;

 G4double Dist,s,xi,yi,zi,ri=0.,risec,rhoi2,cosPsi ; // Intersection point vars

 G4double t1,t2,t3,b,c,d ; // Quadratic solver variables

 G4double nt1,nt2,nt3 ;

 G4double Comp ;

 G4ThreeVector Normal;

 // Cone Precalcs

 tanRMin = (fRmin2 - fRmin1)*0.5/fDz ;

 secRMin = std::sqrt(1.0 + tanRMin*tanRMin) ;

 rMinAv = (fRmin1 + fRmin2)*0.5 ;

 if (rMinAv > halfRadTolerance)

 {

 rMinOAv = rMinAv - halfRadTolerance ;

 }

 else

 {

 rMinOAv = 0.0 ;

 }

 tanRMax = (fRmax2 - fRmax1)*0.5/fDz ;

 secRMax = std::sqrt(1.0 + tanRMax*tanRMax) ;

 rMaxAv = (fRmax1 + fRmax2)*0.5 ;

 rMaxOAv = rMaxAv + halfRadTolerance ;

 // Intersection with z-surfaces

 tolIDz = fDz - halfCarTolerance ;

 tolODz = fDz + halfCarTolerance ;

…… //here starts the real algorithm

Huge performance

gain expected in this

type of code where

shape constants can

be computed outside

the loop

All these

statements are

independent of

the particle !!!

Vectorizing the Physics

 This is going to be more difficult when extracting the

physics classes from G4. However important gains are

expected in the functions computing the distance to the

next interaction point for each process.

 There is a diversity of interfaces and we have now sub-

branches per particle type.

11/07/2011 LPCC workshop Rene Brun 32

Status and next Steps

 Consolidation of the prototype.

 Implementation of the sliding objects.

 Web site construction with a description of the current

status and goals. (now)

 Thread safety of TGeo (now in a good shape)

 Vectorization of TGeo (at least a critical subpart)

 Discussion with the G4 team about the consequences

for the G4 physics classes.

11/07/2011 LPCC workshop Rene Brun 33

