ATLAS: Data/MC comparisons for the Inner Detector tracking and vertexing

Markus Jüngst

On behalf of the ATLAS collaboration

LPCC Simulation Workshop
6 October 2011

Inner Detector Tracking System

- The ID is a combined tracking system within the ATLAS detector
- It consists of three types of subdetectors:
 - Pixel (silicon pads)
 - SCT (silicon micro-strips)
 - TRT (gaseous proportional tube with transition radiation detection)
- Each subsystem divided into:
 - Barrel (B)
 - 2 Endcap regions (A, C)

	Channels	Resolution X×Y(µm)	<hits>/ track</hits>
Pixel	80×10 ⁶	10×115	~3
SCT	6.3×10 ⁶	17×580	~8
TRT	3.5×10 ⁵	130	~36

Material

- ATLAS tracking resolution and efficiency mostly driven by interactions in detector material
 - beyond $|\eta| > 0.5$ resolution increases and efficiency drops

Detector Geometry

- Large detector material within the inner detector
 - resolution and efficiency affected by multiple scattering
 - tracking performance depends highly on knowledge and simulation of material
- Geometry model translated into G4 used to implement detector with high granularity (1.8M volumes)
- Extrapolation algorithms provide ability to propagate particles through geometry model, including material corrections
- Set of physics processes used to describe interactions with matter

	estimated	simulation
Pixel	201 kg	197 kg
SCT	672 ±15 kg	672 kg
TRT	2961 ±14 kg	2962 kg

Material Studies

- Simulated geometry has to be checked and compared with data
- Precise knowledge of material within detector volume necessary
 - tomography with electrons from **Photonconversions**
- Reconstruction of hadron interaction vertices as additional method
 - good vertex resolution allows the study of fine details
- Material uncertainty in simulation
 - better than ~5% in central region
 - at the level of ~10% in most of the **Endcaps**

Radius [mm]

ATLAS Preliminary

100

Stopping Tracks in SCT

- Study of stopping tracks with last hit in layer 2, last hit in layer 3 and non-interacting tracks
- Low momentum tracks are sensitive to the material in the inner detector
- Different clean samples using protons from Λ decays and pions from K_s^0 decays
- Differences between charges due to module tilt and different interaction cross-sections

→Antiprotons are not modeled by QGSP_BERT physics list
 →Change to FTPP_BERT

→ for details see Talk of John Chapman

Stopping Tracks in SCT

- Study of stopping tracks with last hit in layer 2, last hit in layer 3 and non-interacting tracks
- Low momentum tracks are sensitive to the material in the inner detector
- Different clean samples using protons from Λ decays and pions from K_s^0 decays
- Differences between charges due to module tilt and different interaction cross-sections

Pixel - Simulation

- G4 simulates energy loss of particles passing modules
- In digitization charge response calculated
 - based on a simple drift model (including Lorentz-angle and thermal diffusion)
 - instrumental effects added afterwards (thermal noise and cross-talk)
- Clusterisation algorithm builds cluster and computes position and attached error
- Use database to mask detector in reconstruction for dead modules ...
- Distribution of number of pixel as a function of incident angle shows similar behavior in data and MC
 - simulation of pixel size works fairly well but still not perfect
 - disagreement could not be reduced by more realistic (and more CPU consuming) model

Pixel dE/dx

- Better model help to improve ToT (and hence dE/dx) simulation
- After reconstruction based on simulation and measured knowledge of detector there is now a good description of reconstructed energy loss
- Due to the same behavior in data and MC this can be used as a powerful tool for particle identification in the low momentum region

SCT

- Energy loss simulated in G5 (range cut of 50 μm)
- During digitization charges drifted to wafer using Lorentz-angle taking fluctuations into account
- Simulation improved using measured efficiencies, electronic noise and cluster properties

- Potential reduction of difference using improved charge transport model and pulse modeling plus a reduction in G4 range (minimal range cut is 1 µm)
 - both the transport model and the higher G4 granularity would cause dramatic increase in CPU time

TRT

Data

ATLAS Preliminary

Position Residual [mm]

0.115

0.1

- TRT can improve track resolution significantly especially at high momentum tracks
- Hit resolution depends on detector position (here shown for $p_T > 2$ GeV tracks)
 - for Barrel region resolution in MC overestimated
 - best resolution for hits in innermost region (short straws)

Transition Radiation

- Transition-Radiation model to simulate energy loss of charged particles passing from vacuum to a foil
 - based on P.Nevski (NIMA, 522, I 16 (2004))
 - ullet predicts energy loss as a function of γ
- Spectrum has to be tuned with measurements
 - first measurement using test-beam data with different energies
 - improvements after comparison with cosmics
 - next step is to tune with collision data
- List of discrete photons handed to G4
- For high energy deposit (~6 keV) hit treated as high threshold hit

TRT Particle Identification

- Turn-on behavior seen as a function of γ
- Deviations in Endcap region
 - B-type wheels have extra radiator filled compared to A-type (hence more TR)
 - pre-tuned simulation underestimates the TR in A-type wheels (fixed now)
- Barrel module prototype used to tune simulation using test-beam data
- HT probability and dE/dx can be used for particle identification

Inner Detector Alignment

- Mis-measured relative position between detector pieces should not reduce intrinsic tracking resolution
- High accuracy needed for precision physics measurement
 - e.g. a 10-15 MeV precision in W mass requires a
 I µm alignment
- Using calibration stream (isolated track with pT>9 GeV) and cosmic events during empty proton bunches
- Alignment parameters are determined iteratively in three steps with increasing number of aligned substructures
 - including different number of degrees of freedoms for each structure in total 10464, 24528 and 701696 D.o.F for Pixel, SCT and TRT

are needed

Structures	Pixel	SCT	TRT
Levell	_	3	3
Level 2	12	22	96
Level 3	1744	4088	350848

Pixels module

Alignment Results

 Examples for local misalignment: Twist in TRT 4-plane wheel corrected with wire-bywire correction or Pixel module deformation (bow)

After full simulation corrected for during digitisation

With more and more available data alignment is continuously improved (testbeam→cosmics→collisions) example showing Z→μμ for two sets of 2011

Use E/p constraint from e+ vs. e- and apply to muons

Mass Res. (GeV)	ldeal	Additional res.	with E/p const
Barrel	1.60	0.98±0.01	0.71±0.01
Endcap	3.42	3.03±0.03	1.16±0.01

Vertex Reconstruction

With iterative fitting procedures it is possible to fit primary and pile-up vertices

Important to measure vertex resolution to understand influence of track and

event reconstruction

Vertex splitter to study effect

determines resolution in data

Vertex Reconstruction

- Possible to determine average number of interactions from average number of vertices
 - also low multiplicity interactions included → does not reflect vertex reconstruction efficiency
 - Data distribution follows fit from MC
- Vertex resolution shown as a function of track multiplicity
 - general good agreement
 - small trend of underestimated resolution for low number and overestimated at high number

Pile-Up Dependence

based on 50 ns spacing

- Tracking performance depends on isolation of tracks/hits
- For higher occupancy not possible to have a unique association of hits
- Important to understand how number of hits is growing with number of vertices
- Pixel insensitive to out-of-time pileup →possible deviations from not simulated beam background
- For TRT significant out-of-time pileup and a higher occupancy of secondaries
- Offset also influenced by noise-hits and physics at hard scatter

Core of Jets

- Unique hit-to-track association is more complicated in dense region
- Can be studied as a function of isolation to jet axis
- In the region of higher density the probability for shared hits is higher
 - need improved cluster algorithms to reduce the fraction of shared hits
 - at the same time fraction of tracks with TRT association is reduced
- Effect is shown for four different jet momentum regions
- Monte Carlo is able to reproduce behavior
- In next improved clustering, the number of shared pixel hits can be improved by a factor of ~4 near the jet axis

Heavy Ion Tracking

- Heavy Ion conditions give also opportunity to study tracking under high occupancy conditions
- Can study performance vs "centrality" to cover different conditions
 - average number of SCT/Pixel hits on tracks shown for extreme cases of centrality
 - also good vertexing under HI conditions
 - dependence of vertex resolution as a function of track multiplicity well modeled
- excellent tracking performance observed

Summary

- Geometry model in G4 to navigate simulated events through ATLAS detector and calculate detector response
- Material budget controlled with secondary interactions and stopping tracks
- Alignment continuously improved to optimize detector performance
- After Pixel calibration precise track measurement and particle identification possible
- Good SCT modeling, most of the potential improvements interconnected with large computing time
- Model of Transition Radiation step-by-step tuned; full G4 would require hugh CPU
- Due to fast and precise reconstruction of Pixel possible to reconstruct multiple vertices per event
- Even under HI conditions good tracking performance and reconstruction
- Not possible to cover all topics, sorry if I missed something important

Thanks

Thanks for help, material and patient explanations:

M. Elsing, D. Froidevaux, J. Adelman, P. Ward, F. Djama, A. Andreazza, A. Salzburger, F. Luehring and many others ...

Material

EventDisplay public TWiki

(slide 16)

*	The ATLAS simulation Infrastructure	(slide 4,5)
*	HION-2010-01	(slide 20)
*	ATLAS-CONF-2011-012	(slide 2, 16)
*	ATLAS-CONF-2011-016	(slide 9)
*	ATLAS-CONF-2011-128	(slide 13)
*	Pixel public results TWiki	(slide 8,18)
*	SCT public results TWiki	(slide 6, 10)
*	TRT public results TWiki	(slide 11,12,18)
*	Tracking public TWiki	(slide 5,8,16,17,19,20)

Backup

Geometries for Full and Fast Tracking

- Full Geometry too slow for tracking
 - use simplified model
- Combine volumes into larger volumes with same effective material
 - active surfaces for the interactions
 - interleaved with passive volumes
 with no interactions
 - reduces volumes to O(100)

- Volumes for pixel separated from support structure
 - these empty spaces avoid volume clashes during MC studies

Navigation Schemes

- Embedded navigation scheme in tracking geometries
 - G4 navigation uses voxelisation as generic navigation mechanism
 - embedded navigation for simplified models
 - used in pattern recognition, extrapolation, track fitting and fast simulation
- Connected volumes
 - developed geometry of connected volumes
 - new four-vector is calculated in each volume using information from boundary surfaces of connected volumes
 - Combination reduces CPU time significantly

	G4	tracking	ratio
crossed volumes in tracker	474	95	5
time in SI2K sec	19.1	2.3	8.4

b-Tagging

- Primary vertex is input to several physics applications (e.g. b-tagging)
- Robust taggers
 - inclusive secondary vertex tagger (SV0)
 - impact parameter significance (JetProb)
- Performance well studied
 - efficiency and miss-tag rate checked using e.g. lepton method or neg. tags

Vertex mass [GeV]

