(Low momentum) Hadron-Nucleus interactions in ALICE

Marco van Leeuwen, Utrecht University For the ALICE collaboration

LHC Detector Simulation workshop 6-7 October 2011

Motivation

Low-momentum hadron production is of interest for ALICE/heavy ion physics

p/p ratio: baryon transport in p+p and Pb+Pb (baryon chemical potential)

Pb+Pb: Radial flow and hadrochemistry

Hadron-nucleus cross sections

- Tracking efficiency depends on hadron-nucleus cross sections
- Inelastic interactions:
 - Track lost after interaction
- Elastic interactions:
 - Track deflected; losses depend on angle+cuts
- Low momentum cross sections: non-trivial momentum, charge dependence

Note: ALICE uses GEANT3 for detector simulation (GEANT4 validation ongoing)

Inelastic cross sections and efficiency

Fraction of particles suffering inelastic collision at R<80 cm

NB: anti-protons off scale

In ALICE: 100 mb for x-Si corresponds to ~1% loss (depends on material budget)

How well do we know the cross sections?

x-p cross sections

Proton targets:

- Lots of data available (PDG)
- Elastic and total cross section
- GEANT3 cross section accurate

x-d cross sections

Deuteron targets

- Smallest nucleus
- · Lots of data (PDG, total xsec only)

NB: GEANT3(GHEISHA) interpolates from p to Al

π -A cross sections

Data: A.S. Clough et al, Nucl Phys B76, 15 F.Binon et al Nucl Phys B17. 168, D. Ashery et al PRC23, 2173, A Caroll, PRC 14, 635

Small charge dependence at low p for C, no dependence for Al Not much elastic data

GEANT4: good agreement GEANT3: reasonable agreement

K-A cross sections

GEANT3: Rise of K⁻ at low p too strong (see K-d)

GEANT4: better agreement with data. CHIPS better than FTFP

p̄-A cross sections

GEANT3: cross section too large by factor 1.5 or so (500-1000 mb)

GEANT4 (2 phys lists), FLUKA better

ALICE practice (so far): use GEANT3 + GEANT/FLUKA correction

p-A

Good agreement between data and GEANT3, 4

Conclusion

- Hadron-p cross sections well-tuned in GEANT3
- GEANT3: some disagreements for hadron-A
 - Largest differences for anti-p, K⁻
 (affect results at 5-10% level)
 - Solution until now: use FLUKA-based correction for anti-p
- GEANT4
 - Improvements for all particles
 - Largest effect: anti-p
- Note: non-trivial A-dependence for pions (d to C); not investigated in detail