The new (remote) Tier 0

What is it, and how will it be used?

Accelerating Science and Innovation

Agenda

- Why a new computer centre?
- Initiatives for CC extensions
- Call for tender
- Comments on the selected site
- How will the remote CC be used?

History

- In ~2005 we foresaw a problem with the limited power available in the CERN Computer Centre
 - Limited to 2.5 MW
 - No additional electrical power available on Meyrin site
 - Predictions for evolving needs anticipated ~10 MW by 2020
- In addition we uncovered some other concerns
 - Overload of existing UPS systems
 - Significant lack of critical power (with diesel backup)
 - No real facility for business continuity if there was a major catastrophic failure in the CC
- In ~2006 we proposed to build a new CC at CERN on the Prevessin site
 - The idea was to have a modular design that could expand with need

History - 2

Studies for a new CC on Prévessin site

- Four conceptual designs (2008/2009)
- Lack of on site experience
- Expensive!
- Uncertainty in the requirements

Bought 100 kW of critical power in a hosting facility in Geneva

- Addressed some concerns of critical power and business continuity
- In use since mid-2010

Planned to consolidate existing CC

- Minor upgrades brought power available from 2.5 to 2.9 MW
- Upgrade UPS and critical power facilities additional 600 kW of critical power, bringing total IT power available to 3.5 MW

Interest from Norway to provide a remote hosting facility

- Initial proposal not deemed suitable
- Formal offer not convincing
- Interest from other member states

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

New CC history - 1

Call for interest at FC June 2010

- How much computing capacity for 4MCHF/year?
- Is such an approach technically feasible?
- Is such an approach financially interesting?
- Deadline end of November 2010

Response

- Surprising level of interest 23+ proposals
- Wide variation of solutions and capacity offered
- Many offering > 2MW (one even > 5MW)
- Assumptions and offers not always clearly understood
- Wide variation in electricity tariffs (factor of 8!)
- Many visits and discussions in 2010/2011
- Official decision to go ahead taken in spring 2011 and all potential bidders informed
- Several new consortia expressed interest

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

New CC History – 2

Call for tender

- Sent out on 12th Sept
- Specification with as few constraints as possible
- Draft SLA included
- A number of questions for clarification were received and answered (did people actually read the documents?)
- Replies were due by 7th Nov

Tender Specification - I

- Contract length 3+1+1+1+1
- Reliable hosting of CERN equipment in a separated area with controlled access
 - Including all infrastructure support and maintenance
- Provision of full configured racks including intelligent PDUs
- Essentially all services which cannot be done remotely
 - Reception, unpacking and physical installation of servers
 - All network cabling according to CERN specification
 - Smart 'hands and eyes'
 - Repair operations and stock management
 - Retirement operations

Evaluation Process

- The financial offers were reviewed and in some cases corrected
- The technical compliance of a number of offers were reviewed (those which were within a similar price range)
- Meetings were held with 5 consortia to ensure that
 - we understood correctly what was being offered
 - they had correctly understood what we were asking for
 - errors were discovered in their understanding
- Site selected and approved at FC 14th March

Technical Overview

- New facility due to be ready at the end of 2012
- 1100m² (725m²) in an existing building but new infrastructure
- 2 independent HV lines to site
- Full UPS and diesel coverage for all IT load (and cooling)
 - 3 UPS systems per block (A+B for IT and one for cooling and infrastructure systems)
- Maximum 2.7MW
 - In-row cooling units with N+1 redundancy per row (N+2 per block)
 - N+1 chillers with free cooling technology (under 18°C*)
- Well defined team structure for support
- Fire detection and suppression for IT and electrical rooms
- Multi-level access control; site, DC area, building, room
- Estimated PUE of 1.5

Business Continuity

- With a 2nd DC it makes sense to implement a comprehensive BC approach
- First classification of services against three BC options:
 - 1. Backup
 - 2. Load balancing
 - 3. Re-installation
- An internal study has been conducted to see what would be required to implement BC from a networking point of view
- Requires a network hub to be setup independently of the CC
 - Requires an air-conditioned room of about 40-50 sqm for ~ 10 racks with 50-60kW of UPS power and good external fibre connectivity
 - Several locations are being studied
- All IT server deliveries are now being managed as if at a remote location

Use of Remote Hosting

Logical extension of physics data processing

- Batch and disk storage split across the two sites
- The aim is to make the use as invisible as possible to the user

Business continuity

 Benefit from the remote hosting site to implement a more complete business continuity strategy for IT services

Possible Network Topology

Major Challenges

- Large scale remote hosting is new
 - Doing more with same resources
- Networking is complex
- Localization to reduce network traffic?
- For BC; full classification of services
- Latency issues?
 - Expect 20-30ms latency to remote site
 - A priori no known issues but a number of services will need to be tested
- Bandwidth limitations
 - Possible use of QoS
- Disaster recovery backup strategy

Status and Future Plans

- Contract was signed on 8th May 2012
- During 2012
 - Tender for network connectivity
 - Small test installation
 - Define and agree working procedures and reporting
 - Define and agree SLA
 - Integrate with CERN monitoring/ticketing system
 - Define what equipment we wish to install and how it should be operated
- **2013**
 - 1Q 2013: install initial capacity (100kW plus networking) and beginning larger scale testing
 - 4Q 2013: install further 500kW
- Goal for 1Q 2014 to be in production as laaS with first BC services

Traffic today

CERN**| T**Department

Castor IO contains:

- Tape IO , including repack
- 2. LHCOPN IO
- 3. Batch IO
- 4. Part of EOS IO
- 5. Experiment IO (pit)

Batch IO contains:

- 1. Castor IO
- 2. EOS 10
- 3. Part of LHCONE IO
- 4. Part of Internet IO

LHCONE Internet Tapes CASTOR Batch Detectors CERN Bld 513+613

IO rates from the last 12 months

	Av. read	Av. Write	Peak read	Peak write		
	[GBytes/s]	[GBytes/s]	[GBytes/s]	[GBytes/s]		
CASTOR	6.3	11.0	7.0	14.2		
EOS	1.5	2.0	9.1	9.5		
Tape	0.9	0.5	3.6	2.3		
Batch	5.4	1.2	14.3	3.1		
LHCOPN	0.4	1.0	1.5	2.5		
LHCONE	0.2	0.4	0.7	0.9	·	
Internet	0.4	0.6	1.8	2.7		

Take max. Castor + 50% max. EOS as average reference figure → Average 12 GB/s Peak 19 GB/s

Split the batch and EOS resources between the two centers, but keep them as complete logical entities

				-		
	2013	2014	2015	2016	2017	
Average (peak) I/O [GB/s] CERN + ext. site	12 (19)	16 (25)	20 (32)	26 (42)	34 (54)	
power ext. site [KW] ext.site size(CPU+disk)	600 17%	900 23%	1200 29%	1500 33%	1800 38%	
Average (peak) I/O [GB/s] ext. site	2 (3)	4 (6)	6 (9)	9 (14)	13 (21)	
# required 10 Gbit links for average (peak) I/O rates	2 (3)	4 (5)	5 (8)	8 (12)	11 (18)	

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

Network available in 2013 → 24 GB/s

Possible strategies

If necessary to reduce network traffic

- Possibly introduce "locality" for physics data access
- E.g. adapt EOS replication/allocation depending on IP address
- Geographical mapping of batch queues and data seys
- More sophisticated strategies later if needed

Latency & QoS?

Latency

- Inside CERN centre → 0.3 ms
- CC to Safehost or experiment pits → 0,6 ms
- CERN to Wigner (today) → 35 ms; eventual 20-30 ms
- Possible side effects on services:
 - Response times, limit number of control statements, random I/O
- Test now with delay box with Ixbatch and EOS

Quality of Service

- Try some simple ways to implement a first order 'QoS' to avoid network problems in case of peak network loads;
 E.g. splitting TCP and UDP traffic
- Needs to be tested

Summary

- CERN CC will be expanded with a remote Centre in Budapest
- Intention is to implement a "transparent" usage model
- Network bandwidth not a problem
 - Dependence on latency needs to be tested
 - More complex solutions involving location dependency to be tested but hopefully not necessary at least initially

