4th Concept Dual Readout Calorimeter

A.Mazzacane

Universita' del Salento – INFN Lecce

IFAE 2007

Napoli, April 11th 2007

ILC

- electron-positron collider;
- ILC's design consist of two facing linear accelerators, each 20 kilometers long;
- c.m. energy 0.5 1 TeV ;
- ILC target luminosity : 500 fb-1 in 4 years

Requirements for ILC Detectors

- Physics goal of ILC
 - Wide variety of processes
 - Energy range: M_z<E_{CM}<1 TeV</p>
- Basic requirements
 - Reconstruct events at fundamental particle (quark, lepton, gauge bosons) level
 - Efficient identification and precise 4-momentum measurement of these fundamental particles
- ILC detectors should have performances of
 - Good jet energy resolution to separate W and Z
 - Efficient jet-flavor identification capability
 - Excellent charged-particle momentum resolution
 - Hermetic coverage to veto 2-photon background

Detector Design Study

Detector Design Study

- Conceptual design study of detector systems
- 4 major concepts: 3 with PFA + 1 with Compensation Calorimetry

- Sub-detector R&D
 - More than 80 groups in the world (about 1000 physicist)
 - Usually related with several detector concepts
 - → Horizontal collaboration

Performance Goal

• Jet energy resolution

$$\sigma(E_j) / E_j = 30\% / \sqrt{E_j (\text{GeV})}$$

≥ 1/2 w.r.t. LHC

• Impact parameter resolution for flavor tag

 $\sigma_{IP} = 5 \oplus 10/p\beta \sin^{3/2}\theta \,(\mu m)$

- \rightarrow 1/2 resolution term, 1/7 M.S. term w.r.t. LHC
- Transverse momentum resolution for charged particles

 $\sigma(p_t) / p_t^2 = 5 \times 10^{-5} (\text{GeV/c})^{-1}$

 \rightarrow 1/10 momentum resolution w.r.t. LHC

• Hermeticity

$$\theta_{\min} = 5 \, \text{mrad}$$

Napoli, April 11th 2007

Fourth Concept Detector ("4th")

Basic conceptual design: 4 subsystems
Vertex Detector 20-micron pixels (SiD design)
Time Projection Chamber (like LDC or GLD)

Drift Chamber as alternative to overcome known limitations of the TPC technology

Double-readout fiber calorimeter: scintillation/Čerenkov
Muon dual-solenoid spectrometer

4th Concept Detector

Calorimetry at ILC

Most of the important physics processes to be studied in the ILC experiment have multi-jets in the final state

Jet energy resolution is the key in the ILC physics Jets at ILC experiments contain:

- Charged particles (~60%) measured by Tracker
- Photons (~30%) by ECAL

- Neutral hadrons (~10%) by ECAL + HCAL

The world-wide consensus of the performance goal for the jet energy resolution is $\sigma_E / E = 30\% / \frac{E(GeV)}{E(GeV)}$

Hadron Calorimeters

- Detectors measuring properties of particles by total absorption (calorimeters) crucial in HEP experiments
- Detection of em interacting particles performed with high precision
- NOT TRUE for particles subject to strong interaction, due primarily:
 - 1. Tipically, larger signal per unit E_{dep} for em shower component $(\pi^0 \rightarrow \gamma \gamma)$ than for non em component (i.e. e/h >1)
 - 2. Fluctuations in the energy sharing between these 2 components large and non-Poissonian.

Problems in Hadron Calorimeters

- Hadronic response function non-Gaussian
- Hadronic signals non-linear
- Poor hadronic energy resolution and not scaling as E^{-1\2}

LESSONS FROM 25 YEARS OF R&D

Energy resolution determined by fluctuations

The "key" for the solution

To improve hadronic calorimeter performance *reduce/eliminate the (effects of) fluctuations that dominate the performance*Fluctuations in the em shower fraction, f_{em}
Fluctuations in visible energy (nuclear binding energy losses)

Solutions to f_{em} fluctuations

Several ways to deal with problem 1:

- Compensating calorimeter (design to have e/h=1) _____ fluctuations in f_{em} eliminated by design
- Off-line compensation (signals from different longitudinal sections weighetd)
- Measurements of f_{em} event by event (through spatial profile of developing shower)

Solutions in ILC community

- Particle Flow Analysis (PFA)
 calorimeter information combined with measurements from tracking system
- 2. Dual Readout Calorimeter

measurement of f_{em} value event by event by comparing two different signals from scintillation light and Cerenkov light in the same device

GLD

LDC

SiD

PFA Calorimetry

PFA (Particle Flow Analysis) is thought to be a way to get best jet-energy resolution Measure energy of each particle separately Charged particle : by tracker Gamma : by EM Calorimeter Neutral hadron : by EM and Hadron Calorimeter Overlap of charged cluster and neutral cluster in the calorimeter affects the jet-energy resolution Cluster separation in the calorimeter is important Large Radius (R) Strong B-field Fine 3-D granularity (σ) **B***R* Small Moliere length (R_M) Algorithm

Often quoted figure of merit : Napoli, April 11th 2007

A.Mazzacane Universita' del Salento - INFN Lecce

PFA Simulation Study at ILC

$Z \rightarrow qq @ 91.18 GeV$

Unfortunately, the stochastic term increases with energy

Napoli, April 11th 2007

A.Mazzacane Universita' del Salento - INFN Lecce

Dual (Triple) Readout Calorimetry

Dual-Readout: Measure every shower twice – in Scintillation light and in Cerenkov light.

- Spatial fluctuations are huge $\sim \lambda_{int}$ with high density EM deposits: fine spatial sampling with scintillating fibers every 2mm
- EM fraction fluctuations are huge, 5 \rightarrow 95% of total shower energy: insert clear fibers generating Cerenkov light by electrons above $E_{th} = 0.25$ MeV measuring nearly exclusively the EM component of the shower (mostly from $\pi^0 \rightarrow \gamma \gamma$)
- Binding energy (BE) losses from nuclear break-up: measure MeV neutron component of shower.

Dual REAdout Module (DREAM)

http://www.phys.ttu.edu/dream/

Test Beam: Experimental setup

- H4 beam line of the Super Proton Synchrotron at CERN
- **TC : Trigger Counters**

two scintillation counters ($4 \times 4 \text{ cm}^2 \text{ each}$)

coincidence of 2 counters provide main trigger signals

HOD : Hodoscopes

consist of ribbons of scintillating fibers oriented horizontally or vertically. provide x, y coordinate of beam spots(impact point on the detector).

MU: Muon detector

30 x 30 cm² scintillation counter behind 8 \mathbf{l}_{int} absorber. to reject muon contaminated events.

PSD : Preshower detector

5mm thick $(1 X_0)$ lead absorber with scintillation counter

Napoli, Alised 207 eliminate beam contamination

IT : Interaction target counter
Universita' del Salento - INFN Lecce

Results

 a), b) energy distributions from scintillating and Cerenkov fibers for 100GeV single π⁻
 asymmetric, broad, smaller signal than e

typical features of non-comp calorimeter

c) energy resolution(%) vs beam energy

d) Scintillation signal response

The C/S method

• Hadronic calorimeter response (C,S) can be expressed with f_{em} and e/h

$$R(f_{em}) = f_{em} + \frac{1}{e/h} (1 - f_{em})$$

- e/h depends on: active & passive calorimeter media and sampling fraction $(e/h)_{c} = \eta_{c} \sim 5$ for copper/quartz fiber $(e/h)_{s} = \eta_{s} \sim 1.4$ for copper/plastic-scintillator
- Asymmetry, non-gaussian & non-linear response are due to fem fluctuation..
- Measurement f_{em} event by event is the key to improve hadronic calorimeter response

$$\frac{C}{S} = \frac{f_{em} + 0.20(1 - f_{em})}{f_{em} + 0.71(1 - f_{em})}$$

20

DREAM data 200 GeV π : Energy response

Data NIM A537 (2005) 537.

Scintillating fibers

Scint + Cerenkov $f_{EM} \propto (C/E_{shower} - 1/\eta_C)$ (4% leakage fluctuations) Scint + Cerenkov $f_{EM} \propto (C/E_{beam} - 1/\eta_C)$ (suppresses leakage) 21

Correcting the Shower Components

• High multiplicity jets

A.Mazzacane Universita' del Salento - INFN Lecce

Corrected Calorimeter Response

$$E_{HCAL} = \frac{\eta_{S} \cdot E_{S} \cdot (\eta_{C} - 1) - \eta_{C} \cdot E_{C} \cdot (\eta_{S} - 1)}{\eta_{C} - \eta_{S}}$$

• High multiplicity jets

DREAM calibrated with 40 GeV e⁻ into center of each tower

recover linear hadronic response up to 300 GeV for π and "jets"

Hadronic linearity may be the most important achievement of dualreadout calorimetry.

From DREAM to the 4th Concept HCAL

DREAM module 3 scintillating fibers 4 Cerenkov fibers

ILC-type module

2mm W or brass plates; fibers every 2 mm

The 4th Concept Calorimeter in Ilcroot

4th Concept Simulation

- Cu + scintillating fibers + Ĉerenkov fibers
- ~ 10 λ_{int} depth
- Fully projective geometry
- ~1.5° aperture angle
- Azimuth coverage down to 3.4°
- Barrel: 13924 cells
- Endcaps: 3164 cells

Hadronic Calorimeter Cells

Bottom view of single cell

Bottom cell size: ~2 cm

Top cell size: ~ 4 cm

Number of fibers inside each cell: 1980 equally subdivided between Scintillating and Cerenkov Fiber stepping ~2 mm Prospective view of clipped cell

Cell length: 150 cm (but DoD has 100cm)

Simulation/Reconstruction Steps

Napoli, April 11th 2007

A.Mazzacane Universita' del Salento - INFN Lecce

Simulation

Light production in the fibers simulated through 2 separate steps:

- 1. Energy deposition (hits) in active materials calculated by the tracking algorithm of the MC
- 2. Conversion of the energy into the number of S and C photons by specific routins taking account several factors: energy of the particle, angle between the particle and the fiber, etc. Poisson uncertaintity introduced in the number of photon produced

Simulation

 Response function of the electronics not yet simulated (digits)

 Random noise generated to test the ability of reconstruction algorithm to reject such spurious "hits"

Fluka vs G3/G4

Fluka vs G3/G4

Geant3	46.541 GeV
Fluka	48.074 GeV
Geant4 QGSP_BER	45.024 GeV
Geant4 QGSP_BER_HP	47.791 GeV

Reconstruction

Clusterization (pattern recognition)

cluster = collection of nearby "digits"

- Build Clusters from cells distant no more than two towers away
- Unfold overlapping clusters through a Minuit fit to cluster shape

 Reconstructed energy E adding separately E_S and E_C of all the cells belonging to the reconstructed cluster

Calibration

Energy of HCAL calibrated in 2 steps:

- 1. Calibrate the signals from S and C fibers used single 40 GeV e⁻ (to get η_C and η_S)
- 2. Keep hadronic shower energy

indipendent from f_{em}

used single 40 GeV π^-

Reconstructed energy

Once HCAL calibrated, calorimeter energy:

$$E_{HCAL} = \frac{\eta_{S} \cdot E_{S} \cdot (\eta_{C} - 1) - \eta_{C} \cdot E_{C} \cdot (\eta_{S} - 1)}{\eta_{C} - \eta_{S}}$$

$$\eta_c = \left(\frac{e}{h}\right)_C \qquad \eta_s = \left(\frac{e}{h}\right)_s$$

Napoli, April 11th 2007

A.Mazzacane Universita' del Salento - INFN Lecce

Reconstructed vs Beam Energy

Energy linearity

Resolution for hadrons

Jets Studies

Napoli, April 11th 2007

The Jet Finder Algorithm

- Look for the jet axis using a Durham algorithm
 - Charged tracks
 - Calorimeter cells
 - Calorimeter Clusters
- Jet core
 - Open a cone increasingly bigger around the jet axis (< 60°)
 - Run a Durham j.f. on the cells of the calorimeter inside the cone
- Jet outliers
 - Check leftover/isolated calo cluster/cells for match with a track from TPC+VXD
 - Add calorimetric or track momentum
 - Add low P_t tracks not reaching the calorimeter
- Muons

Total Energy Plots

Energy Resolution

Physics Studies

Napoli, April 11th 2007

$e^+e^- \rightarrow Z^{o}H^{o} \rightarrow v\underline{v} c\underline{c}$

- Pandora-Pythia (E_{cm}=350 GeV, M_H=140 GeV) + Fluka
- No MUD (use MC truth)
- Cut recoil mass 20 GeV around Z^o mass
- Maximize j.f. efficiency through y_t cut (ε_{ff} =97%)

Jet-Jet Mass Plot

Conclusions

- The 4th Concept has chosen a Calorimeter with Dual Readout
- The technology has been proved at a test beam, but never in a real experiment
- Performance of Calorimeter is expected to be extremely good:

$$\sigma_{\rm E}/{\rm E} = 36\%/\sqrt{\rm E}$$
 (single particles)
 $\sigma_{\rm E}/{\rm E} = 39\%/\sqrt{\rm E}$ (jets)

 An EMCAL design with Dual Readout crystal technology is under way

Backup slides

Napoli, April 11th 2007

Present Status: VXD+TPC+DREAM

Dream Performance (pions)

54

Results from DREAM simulation (V. Di Benedetto)

- Scintillation and Cerenkov processes well simulated
- Easily switch from Cu to W (however, need to change calibration values of η_{S} and $\eta_{\text{C}})$
- Pattern recognition in place (nearby cells).
- Hadronic showers appear to reproduce the compensation effect seen in the test module (Fluka)
- PiD ($e/\pi/\mu$) results are very promising

Universita del Salento - INFIN Lecce

Present Status: VXD+TPC+DREAM

(1) Measure MeV neutrons (binding energy losses) by time.

Velocity of MeV neutrons is ~ 0.05 c

- (1) Scintillation light from np→np scatters comes late; and,
- (2) neutrons fill a larger volume

Universita' del Salento - INFN Lecce

(2) Measure MeV neutrons (binding energy losses) by separate hydrogenous fiber

- A hydrogenous scintillating fiber measures proton ionization from np—np scatters;
- A second scintillating non-hydrogenous fiber measures all charged particles, but except protons from np scatters;
- This method has the weakness that the neutron component is the difference of two signals.

(3) Measure MeV neutrons (binding energy losses) with a neutron-sensitive fiber

- Lithium-loaded or Boron-loaded fiber (Pacific Northwest Laboratory has done a lot of work on these)
- Some of these materials are difficult liquids
- Nuclear processes may be slow compared to 300 ns.
- But, most direct method we know about.

(4) Measure MeV neutrons (binding energy losses) using different Birk's constants

- Birk's constant parameterizes the reduction in detectable ionization from heavily ionizing particles (essentially due to recombination)
- Use two scintillating fibers with widely different Birk's constants.
- Two problems: (i) hard to get a big difference, and Napoli, A(rii) neutron content depends on the difference of two4

The Ultimate Calorimetry: Triple fiber and dual crystal

Triple fiber: measure every shower three different ways: "3-in-1 calorimeter"

- Spatial fluctuations are huge ~λ_{int} with high density EM deposits: fine spatial sampling with scintillating fibers every 2mm
- EM fraction fluctuations are huge, 5→95% of total shower energy: insert clear fibers generating Cerenkov light by electrons above E_{th} = 0.25 MeV measuring nearly exclusively the EM component of the shower (mostly from π⁰→γγ)
 Binding energy (BE) losses from nuclear break-up: measure

MeV neutron component of shower.

Dual-readout crystal EM section (in front of triple-readout module)

- Half of all hadrons interact in the "EM section" ... so it has to be a "hadronic section" also to preserve excellent hadronic energy resolution.
- Dual-readout of light in same medium: idea tested at CERN (2004) "Separation of Scintillation and Cerenkov Light in an Optical Calorimeter", NIM A550 (2005) 185.
- Use multiple MPCs (probably four, two on each end of crystal), with filters.
- Physics gain: excellent EM energy resolution (statistical term very small), excellent spatial resolution with small transverse crystal size. (This is what CMS needs ...)

Particle Flow Algorithm

Flow of PFA

Photon Finding
 Charged Hadron Finding
 Neutral Hadron Finding
 Satellite Hits Finding

 *Satellite hits = calorimeter hit cell which does not belong to a cluster core

Dual-Readout: Measure every shower twice - in Scintillation light and in Cerenkov light.

$$(e/h)_{\rm C} = \eta_{\rm C} \sim 5$$
 $(e/h)_{\rm S} = \eta_{\rm S} \sim 1.4$

$$\begin{split} C &= \left[\begin{array}{c} f_{EM} + \left(1 - f_{EM} \right) / \eta_C \right] \ E \\ S &= \left[\begin{array}{c} f_{EM} + \left(\begin{array}{c} 1 - f_{EM} \right) / \eta_S \right] \ E \end{split} \end{split}$$

$$\rightarrow$$
 C / E = 1 / η_{C} + f_{EM} (1 - 1/ η_{C})

Napoli, April 11th 2007

A.Mazzacane Universita' del Salento - INFN Lecce

More important than good Gaussian response: DREAM module calibrated with 40 GeV e⁻ into the centers of each tower responds linearly to π - and "jets" from 20 to 300 GeV.

Hadronic linearity may be the most important achievement of dualreadout calorimetry.

Calorimeric/charged contribution

Jet Outliers Charged Contribution

