IFAE 2007

Violazione del sapore leptonico in modelli di grande unificazione

Lorenzo Calibbi Università di Valencia

Napoli, 12/04/2007

Main motivations for studying LFV processes:

- •Neutrino oscillations shows that lepton family numbers are not conserved
- •Consequence (in general) of new physics at the TeV scale,

while in the SM is higly suppressed

•Model dependent and so complementary to direct searches of new physics

Experiments: Running: BaBar, Belle MEG (first data in 2007) Future: SuperKEKB (2011) PRISM/PRIME (next decade) Super Flavour factory (?) Main motivations for studying LFV processes:

- •Neutrino oscillations shows that lepton family numbers are not conserved
- •Consequence (in general) of new physics at the TeV scale,

while in the SM is higly suppressed

•Model dependent and so complementary to direct searches of new physics

Process	Present bound	Future sensitivity	
$BR(\mu \to e\gamma)$	$1.2 imes 10^{-11}$	$\mathcal{O}(10^{-13} - 10^{-14})$	
$BR(\mu \rightarrow eee)$	1.1×10^{-12}	$\mathcal{O}(10^{-13} - 10^{-14})$	
$CR(\mu \rightarrow e \text{ in Ti})$	$4.3 imes 10^{-12}$	$\mathcal{O}(10^{-18})^{\mathrm{a}}$	
$BR(\tau \rightarrow e\gamma)$	3.1×10^{-7}	$\mathcal{O}(10^{-8}) - \mathcal{O}(10^{-9})^{a}$	
$BR(\tau \rightarrow eee)$	2.7×10^{-7}	$\mathcal{O}(10^{-8}) - \mathcal{O}(10^{-9})^{a}$	
$BR(\tau \rightarrow \mu \gamma)$	$6.8 imes 10^{-8}$	$\mathcal{O}(10^{-8}) - \mathcal{O}(10^{-9})^{\mathrm{a}}$	
$\mathrm{BR}(\tau \to \mu \mu \mu)$	2×10^{-7}	$O(10^{-8}) - O(10^{-9})^{a}$	

TABLE I. Present bounds and expected experimental sensitivities on LFV processes [9-19].

^aPlanned or discussed experiment, not yet under construction

SUSY induced LFV:

$$\mathcal{M}_{\tilde{l}}^{2} = \begin{pmatrix} (\mathbf{m}_{\tilde{l}}^{2})_{\mathbf{ij}} + (m_{l}^{2})_{ij} + \mathcal{O}(g^{2})\delta_{ij} & (\mathbf{A}_{l})_{\mathbf{ji}}v_{d} - (m_{l})_{ji}\mu \tan\beta \\ (\mathbf{A}_{l})_{\mathbf{ij}}v_{d} - (m_{l})_{ij}\mu \tan\beta & (\mathbf{m}_{\tilde{\mathbf{e}}}^{2})_{\mathbf{ij}} + (m_{l}^{2})_{ij} + \mathcal{O}(g^{2})\delta_{ij} \end{pmatrix}$$

$$\begin{aligned} \textbf{GUT effect (e.g. SU(5)) if } M_X > M_{GUT} \\ (\Delta_{RR})_{i \neq j} &= -3 \cdot \frac{3m_0^2 + a_0^2}{16\pi^2} Y_t^2 V_{i3} V_{j3} \ln \left(\frac{M_X^2}{M_{GUT}^2}\right) \\ (\Delta_{LL})_{i \neq j} &= -\frac{3m_0^2 + A_0^2}{16\pi^2} Y_{\nu i3} Y_{\nu j3} \ln \left(\frac{M_X^2}{M_{R_3}^2}\right) \end{aligned}$$

LFV from SUSY GUTs

The most general renormalizable SO(10) superpotential, relevant to fermion masses:

$$W_{SO(10)} = Y_{ij}^{10} 16_i 16_j 10 + Y_{ij}^{126} 16_i 16_j 126 + Y_{ij}^{120} 16_i 16_j 120$$

$$\Rightarrow \begin{cases} m_D^{\nu} = M_{10} - 3M_{126} + M_{120} \\ m_u = M_{10} + M_{126} + M_{120} \end{cases}$$

At least one of the eigenvalues of the neutrino Yukawa matrix in $Y_{\nu} = m_D^{\nu}/v_u$ has to be as large as the top Yukawa. And what about the *mixing angles*? We consider two benchmark cases:

"Minimal" mixing (CKM):

$$Y^{\nu} = Y^{u} \Rightarrow Y^{\nu} = V_{\text{CKM}}^{T} Y_{diag}^{u} V_{\text{CKM}}$$

"Maximal" mixing (PMNS):

$$Y^{\nu} = U_{\rm PMNS} Y^u_{diag}$$

CKM case:

$$W_{SO(10)} = (Y_u)_{ij} \mathbf{16}_i \mathbf{16}_j \mathbf{10}_u + (Y_d)_{ii} \mathbf{16}_i \mathbf{16}_i \mathbf{10}_d + (Y_R)_{ij} \mathbf{16}_i \mathbf{16}_j \mathbf{126}_j$$

PMNS case:

$$W_{SO(10)} = (Y_u)_{ij} \mathbf{16}_i \mathbf{16}_j \mathbf{10}_u + (Y_d)_{ii} \mathbf{16}_i \mathbf{16}_i \frac{\langle \mathbf{45} \rangle}{M_{\text{Planck}}} \mathbf{10}_d + (Y_R)_{ij} \mathbf{16}_i \mathbf{16}_j \mathbf{126}_j$$

Just frameworks to compute the RG effects in the soft masses sector, not complete fermion masses & mixings models! Scheme of the RG running and of the energy scales involved

$$\tan\beta = 30; A_0 = 0; m_t = 173 \text{ GeV}$$

 $0 < m_0 < 5000 \text{ GeV}$ $0 < M_{1/2} < 1500 \text{ GeV}$ $-3m_0 < A_0 < +3m_0$ $\tan\beta = 10, 40$ μ and $B\mu$ fixed by EWB Theoretical constraints: •REWSB •No tachyonic particles •Neutral LSP *Experimental constraints:* •LEP limit on Higgs mass •Limits on SUSY particles

 $0 < m_0 < 5000 {
m GeV}$ $0 < M_{1/2} < 1500 \text{ GeV}$ $-3m_0 < A_0 < +3m_0$ $\tan\beta = 10, 40$ μ and $B\mu$ fixed by EWB Theoretical constraints: •REWSB •No tachyonic particles •Neutral LSP *Experimental constraints:* •LEP limit on Higgs mass •Limits on SUSY particles

 $0 < m_0 < 5000 \text{ GeV}$ $0 < M_{1/2} < 1500 \text{ GeV}$ $-3m_0 < A_0 < +3m_0$ $\tan\beta = 10, 40$ μ and $B\mu$ fixed by EWB Theoretical constraints: •REWSB •No tachyonic particles •Neutral LSP *Experimental constraints:* •LEP limit on Higgs mass •Limits on SUSY particles

 $0 < m_0 < 5000 \text{ GeV}$ $0 < M_{1/2} < 1500 \text{ GeV}$ $-3m_0 < A_0 < +3m_0$ $\tan\beta = 10, 40$ μ and $B\mu$ fixed by EWB Theoretical constraints: •REWSB •No tachyonic particles •Neutral LSP *Experimental constraints:* •LEP limit on Higgs mass •Limits on SUSY particles

$\mu \to e\,\gamma\,$ and ${\rm MEG}$ sensitivity reach

- Maximal mixing (PMNS), high $\tan\beta$ case, already ruled out in the LHC accessible region.
- **MEG** will test it well beyond the LHC.
- Minmal case (CKM) presently unconstrained.

MEG will test, for high values of $\tan\beta$, the region $(m_0, m_{\tilde{g}}) \leq 1$ TeV

But in the PMNS case, the rate depends on U_{e3} ...

• Maximal mixing (PMNS), high $\tan\beta$ case, already ruled out in the LHC accessible region.

MEG will test it well beyond the LHC.

• Minmal case (CKM) presently unconstrained.

MEG will test, for high values of $\tan\beta$, the region $(m_0, m_{\tilde{g}}) \leq 1$ TeV

But in the PMNS case, the rate depends on U_{e3} ...

$$U_{e3}$$
 and ${
m BR}(\mu
ightarrow e + \gamma)$

$$(\Delta_{LL})_{i\neq j} = -\frac{3m_0^2 + A_0^2}{16\pi^2} \sum_k Y_{\nu \ ik} Y_{\nu \ kj}^{\dagger} \ln\left(\frac{M_X^2}{M_{R_k}^2}\right)$$

PMNS case:

$$Y_{\nu} = U_{\rm PMNS} Y_u^{diag}$$

LFV from SUSY GUTs

$$U_{e3}$$
 and ${
m BR}(\mu
ightarrow e + \gamma)$

$$(\Delta_{LL})_{i \neq j} = -\frac{3m_0^2 + A_0^2}{16\pi^2} \sum_k Y_{\nu \ ik} Y_{\nu \ kj}^{\dagger} \ln\left(\frac{M_X^2}{M_{R_k}^2}\right)$$

Bottom-up parametrization: $Y_{\nu} = \frac{1}{\langle H_u \rangle} U_{\text{PMNS}} \mathcal{D}_{\nu} \not \mathcal{R} \mathcal{D}_N$

$$\begin{split} (\Delta_{LL})_{12} &= -\frac{3m_0^2 + A_0^2}{16\pi^2} \left(y_t^2 \underbrace{U_{e3}}_{\mu_3} \ln\left(\frac{M_X^2}{M_{R_3}^2}\right) + y_c^2 U_{e2} U_{\mu_2}^* \ln\left(\frac{M_X^2}{M_{R_2}^2}\right) + y_u^2 U_{e1} U_{\mu_1}^* \ln\left(\frac{M_X^2}{M_{R_1}^2}\right) \right) \\ & \left| U_{e3}^{lim} \right| \approx \frac{y_c^2}{y_t^2} \frac{|U_{e2}| \cdot |U_{\mu_2}|}{|U_{\mu_3}|} \frac{\ln M_X - \ln M_{R_2}}{\ln M_X - \ln M_{R_3}} \sim \mathcal{O}(10^{-5}), \\ & \bigoplus \quad \frac{Y_c^2 U_{\mu_2} U_{e2} \ln(M_X/M_{R_2})}{Y_t^2 V_{td} V_{ts} \ln(M_X/M_{R_3})} \underbrace{\swarrow \mathcal{O}(10^{-2})}_{\Psi_{t2}^2 V_{td} W_{ts} \ln(M_X/M_{R_3})} \end{split}$$

LFV from SUSY GUTs

$\mu \to e\,\gamma\,$ in the $\,{\it U}_{e^3}$ = 0 PMNS case

- The PMNS U_{e3} = 0 scenario is currently better costrained by $\tau \to \mu \, \gamma$
- For high values of $\tan\beta$, **MEG** will probe almost all the LHC accessible parameter space
- In the case of small tan β , MEG will test up to $(m_0, m_{\tilde{g}}) \lesssim 900 \text{ GeV}$

The observed enhancement is due to the interplay of different effects:

- The running of U_{e3} from low energy up to the high scale where the PMNS condition is imposed
- The dominance in some regions of the paramater space of SU(5) generated contributions

$au ightarrow \mu \, \gamma$ and the Super B (and Flavour) factories

TABLE IX: Reach in $(m_0, m_{\tilde{g}})$ of the present and planned experiment from their $\tau \to \mu \gamma$ sensitivity.

	PMNS		CKM	
Exp.	$t_{\beta} = 40$	$t_{\beta} = 10$	$t_{\beta} = 40$	$t_{\beta} = 10$
BaBar, Belle	$1.2 { m TeV}$	no	no	no
SuperKEKB	$2 { m TeV}$	$0.9~{\rm TeV}$	no	no
Super Flavour a	$2.8 { m ~TeV}$	$1.5 { m ~TeV}$	$0.9~{\rm TeV}$	no

$\mu ightarrow e \mbox{ in Ti}$ and ${\bf PRISM/PRIME}$ conversion experiment

LFV from SUSY GUTs

Conclusions

• LFV experiments are able to constrain/discriminate among different SUSY-GUTs scenarios, thus resulting highly complementary to the LHC.

Supposing that LHC does find evidences of SUSY:

• If they detect LFV processes, considering the interplay between different experiments, we should be able to get a deep insight into the structure of Y_v

• If MEG (and Super Flavour) happens not to see LFV, only two possibilities should be left:

a) minimal mixing, low $tan\beta$ scenario

b) mSUGRA-SO(10) see-saw without fine-tuned Y_v is not a viable framework of new physics.

• If the planned high sensitivity of PRISM/PRIME doesn't manage to find LFV evidences, the latter conclusion should be the most feasible one.

Moreover:

• LFV experiments will be able to test some scenarios even in the region of the mSUGRA parameter space beyond the LHC sensitivity reach

•The correlation of U_{e3} and LFV can be important in the context of SUSY-GUTs and any measurement of LFV at MEG could shed some light on either U_{e3} or on the parameter space of SUSY-GUTs.

Other slides

"Running" $U_{\!e3} {\rm and} ~{\rm BR}(\mu \to e + \gamma)$

$$m_{\nu}(\mu) = Y_{\nu}(\mu) M_R^{-1}(\mu) Y_{\nu}^T(\mu)$$

The U_{e3} evolution gives, for hierarchical neutrinos (phases set to 0):

$$\Delta U_{e3}^{hie}(M_W \to M_X) \approx -\frac{1}{16\pi^2} \left[y_{\tau}^2 \ln(\frac{M_X}{M_W}) + y_t^2 \ln(\frac{M_X}{M_{R_3}}) \right] U_{e1} U_{e2} U_{\mu3} U_{\tau3} \frac{m_{\nu_2} - m_{\nu_1}}{m_{\nu_3}} \\ \sim -(\tan^2 \beta \cdot \mathcal{O}(10^{-6}) + \mathcal{O}(10^{-3})), \qquad \text{Indipendent of } U_{e3}! \\ \xrightarrow{100}{100} \frac{1}{100} \frac{1}{100}$$

LFV from SUSY GUTs

"Pure" SU(5) effects

Let's turn on the *SU(5)* running
$$\implies (\Delta_{RR})_{i\neq j} = -3 \cdot \frac{3m_0^2 + a_0^2}{16\pi^2} Y_t^2 V_{i3} V_{j3} \ln\left(\frac{M_X^2}{M_{GUT}^2}\right)$$

 \implies double MI indipendent of U_{e3} (usually subdominant):

LFV from SUSY GUTs

LFV from SUSY GUTs

LFV from SUSY GUTs

Dependence on $\mathrm{tan}\beta$

Region I: $(\delta_{LR})_{21}^{eff} = (\delta_{LL})_{23} \cdot \mu m_{\tau} \tan \beta \cdot (\delta_{RR})_{31}$

Region II:
$$\Delta U_{e3}^{hie}(M_W \to M_X) \approx -\frac{1}{16\pi^2} \left[y_{\tau}^2 \ln(\frac{M_X}{M_W}) + y_t^2 \ln(\frac{M_X}{M_{R_3}}) \right] U_{e1} U_{e2} U_{\mu 3} U_{\tau 3} \frac{m_{\nu_2} - m_{\nu_1}}{m_{\nu_3}} \sim -(\tan^2 \beta \cdot \mathcal{O}(10^{-6}) + \mathcal{O}(10^{-3})),$$

Dependence on $\mathrm{tan}\beta$

And what about the *mixing angles*? We consider two benchmark cases:

"Minimal" mixing (CKM):

$$Y^{\nu} = Y^{u} \Rightarrow Y^{\nu} = V_{\text{CKM}}^{T} Y_{diag}^{u} V_{\text{CKM}}$$

"Maximal" mixing (PMNS):

$$Y^{\nu} = U_{\rm PMNS} Y^u_{diag}$$

CKM case:

$$W_{SO(10)} = (Y_u)_{ij} \mathbf{16}_i \mathbf{16}_j \mathbf{10}_u + (Y_d)_{ii} \mathbf{16}_i \mathbf{16}_i \mathbf{10}_d + (Y_R)_{ij} \mathbf{16}_i \mathbf{16}_j \mathbf{126}_j$$

PMNS case:

$$\begin{split} W_{SU(5)} = \frac{1}{2} \; (Y_u)_{ii} \; \mathbf{10_i} \; \mathbf{10_i} \; \mathbf{5_u} + (Y_\nu)_{ii} \; \mathbf{\overline{5}_i} \; \mathbf{1_i} \; \mathbf{5_u} + (Y_d)_{ij} \; \mathbf{10_i} \; \mathbf{\overline{5}_j} \; \mathbf{\overline{5}_d} + \frac{1}{2} \; M_{ii}^R \; \mathbf{1_i 1_i} \\ V_{\text{CKM}}^T \; Y_d \; U_{\text{PMNS}}^T = Y_d^{\text{diag}} \end{split}$$