New mesons with open and hidden charm

Stefano Nicotri

Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari, & INFN Sezione di Bari

April 12nd 2007

∃ >

Outline

New states recently discovered in the open and hidden charm sector:

- Open charm
 - D^{*}_{sJ}(2317)
 - *D_{sJ}*(2460)
 - *D_{sJ}*(2632)
 - D_{sJ}(2860)
 - D^{*}₀ (2308)
 - D₁⁹(2440)
- Ø Hidden charm
 - h_c
 - η'_c
 - X(3872)
 - X(3940)
 - Y(3940)
 - Z(3930)
 - Y(4260)
 - ...

프 🖌 🔺 프 🕨

3

Outline

New states recently discovered in the open and hidden charm sector:

- Open charm
 - D^{*}_{sJ}(2317)
 - $D_{sJ}(2460)$ • $D_{sJ}(2632)$
 - $D_{sJ}(2860) \rightarrow \text{Possible } J^P \text{ assignment}$
 - D₀^{*}(2308)
 D'₁(2440)

Ø Hidden charm

- h_c
- η'_c
- $X(3872) \rightarrow$ Possible interpretation
- X(3940)
- Y(3940)
- Z(3930)
- Y(4260)
- . . .

★ Ξ ► < Ξ ►</p>

3

A new D_{sJ} state has been observed in the DK system inclusively produced in the system $e^+e^-\to DK.$

- Reconstructed in D^0K^+ , with D^0 both decaying to $K^-\pi^+$ and $K^-\pi^+\pi^0$, and in $D^+K^0_S$
- $M = 2856.6 \pm 1.5 \pm 5.0 \text{ MeV}$
- $\Gamma(D_{sJ}(2860) \rightarrow DK) =$ 48 ± 7 ± 10 MeV

 $D_{sl}(2860)$

 Not (yet) observed neither in D^{*}K nor in D₅η (no experimental bound)

Figure: Invariant mass distribution of *DK* for (a) $D_{K^-\pi^+}^0 K^+$, (b) $D_{K^-\pi^+\pi^0}^0 K^+$ and (c) $D_{K^-\pi^+\pi^+}^+ K_s^0$ (BaBar Collaboration, hep-ex/0607082, July 2006).

< (1) b

E >

∃ >

Possible quantum number assignments?

A new D_{sJ} state has been observed in the DK system inclusively produced in the system $e^+e^-\to DK.$

- Reconstructed in D^0K^+ , with D^0 both decaying to $K^-\pi^+$ and $K^-\pi^+\pi^0$, and in $D^+K^0_S$
- $M = 2856.6 \pm 1.5 \pm 5.0$ MeV
- $\Gamma(D_{sJ}(2860) \rightarrow DK) =$ 48 ± 7 ± 10 MeV

 $D_{sl}(2860)$

 Not (yet) observed neither in D^{*}K nor in D₅η (no experimental bound)

Figure: Invariant mass distribution of *DK* for (a) $D_{K^-\pi^+}^0 K^+$, (b) $D_{K^-\pi^+\pi^0}^0 K^+$ and (c) $D_{K^-\pi^+\pi^+}^+ K_s^0$ (BaBar Collaboration, hep-ex/0607082, July 2006).

Possible quantum number assignments?

Heavy-Light cs mesons spectroscopy

Framework

Defined:

- s_Q heavy quark spin
- sq light antiquark spin
- ℓ orbital angular momentum of the light degrees of freedom (light quarks and gluons)

•
$$s_\ell = s_{\bar{q}} + \ell$$

 s_{ℓ}^{P} doublets (with P = parity) of $Q\bar{q}$ mesons, each one made of two particles with quantum numbers $J^{P} = s_{\ell}^{P} \pm 1/2$.

- 4 同 ト - 4 三 ト - 4 三 ト

Heavy-Light cs mesons spectroscopy

Table: States with $c\bar{s}$ as reported on PDG 2006

s_ℓ^P	$\frac{1}{2}^{-}$	$\frac{1}{2}^+$	$\frac{3}{2}^+$
$J^P = s_\ell^P - \frac{1}{2}$	$D_s(1965) (0^-)$	$D_{sJ}^{*}(2317) (0^{+})$	$D_{s1}(2536) (1^+)$
$J^P = s^P_\ell + rac{1}{2}$	$D_s^*(2112) (1^-)$	$D_{sJ}(2460) (1^+)$	$D_{s2}(2573)$ (2 ⁺)

Table: Doublets still to be filled

$$\begin{array}{|c|c|c|c|c|}\hline \hline $S^P_\ell & \frac{3}{2}^- & \frac{5}{2}^- \\ \hline $J^P = s^P_\ell - \frac{1}{2}$ & (P^{*+}_{s1}) (1^-)$ & (P^{*+}_{s2}) (2^-)$ \\ \hline $J^P = s^P_\ell + \frac{1}{2}$ & (P^{*}_{s2}) (2^-)$ & (P_{s3}) (3^-)$ \\ \hline \end{array}$$

$D_{sJ}(2860)$

- State in an unfilled doublet
- Radial excitation of a state belonging to a filled doublet

< (1) b

< ∃→

A 3 b

-

Heavy-Light cs mesons spectroscopy

Table:	States	with	сī	as	reported	on	PDG	2006
--------	--------	------	----	----	----------	----	-----	------

s^P_ℓ	$\frac{1}{2}^{-}$	$\frac{1}{2}^{+}$	$\frac{3}{2}^{+}$
$J^P = s_\ell^P - \frac{1}{2}$	$D_s(1965) (0^-)$	$D_{sJ}^{*}(2317) (0^{+})$	$D_{s1}(2536) (1^+)$
$J^P = s^P_\ell + rac{1}{2}$	$D_s^*(2112) (1^-)$	$D_{sJ}(2460) (1^+)$	$D_{s2}(2573)$ (2 ⁺)

Table: Doublets still to be filled

$D_{sJ}(2860)$

- State in an unfilled doublet
- Radial excitation of a state belonging to a filled doublet

-

-

Heavy quark limit

Fields:

$$\begin{aligned} \bullet \ s_{\ell}^{P} &= \frac{1}{2}^{-} \to H_{a} = \frac{1 + \gamma^{\mu} v_{\mu}}{2} [P_{a\mu}^{*} \gamma^{\mu} - P_{a} \gamma_{5}] \\ \bullet \ s_{\ell}^{P} &= \frac{1}{2}^{+} \to S_{a} = \frac{1 + \gamma^{\mu} v_{\mu}}{2} \left[P_{1a}^{\prime \mu} \gamma_{\mu} \gamma_{5} - P_{0a}^{*} \right] \\ \bullet \ s_{\ell}^{P} &= \frac{3}{2}^{+} \to T_{a}^{\mu} = \frac{1 + \gamma^{\mu} v_{\mu}}{2} \left\{ P_{2a}^{\mu\nu} \gamma_{\nu} - P_{1a\nu} \sqrt{\frac{3}{2}} \gamma_{5} \left[g^{\mu\nu} - \frac{1}{3} \gamma^{\nu} (\gamma^{\mu} - v^{\mu}) \right] \right\} \\ \bullet \ s_{\ell}^{P} &= \frac{3}{2}^{-} \to X_{a}^{\mu} = \frac{1 + \gamma^{\mu} v_{\mu}}{2} \left\{ P_{2a}^{*\mu\nu} \gamma_{5} \gamma_{\nu} - P_{1a\nu}^{*\prime} \sqrt{\frac{3}{2}} \left[g^{\mu\nu} - \frac{1}{3} \gamma^{\nu} (\gamma^{\mu} - v^{\mu}) \right] \right\} \\ \bullet \ s_{\ell}^{P} &= \frac{5}{2}^{-} \to \\ \chi_{a}^{\prime \mu\nu} &= \frac{1 + \gamma^{\mu} v_{\mu}}{2} \left\{ P_{3a}^{\mu\nu\sigma} \gamma_{\sigma} - P_{2a}^{*\prime \alpha\beta} \sqrt{\frac{5}{3}} \gamma_{5} \left[g_{\alpha}^{\mu} g_{\beta}^{\nu} - \frac{1}{5} \gamma_{\alpha} g_{\beta}^{\nu} (\gamma^{\mu} - v^{\mu}) - \frac{1}{5} \gamma_{\beta} g_{\alpha}^{\mu} (\gamma^{\nu} - v^{\nu}) \right] \right\} \end{aligned}$$

Interaction Lagrangians:

•
$$\mathcal{L}_{H} = g \operatorname{Tr}[\bar{H}_{a}H_{b}\gamma_{\mu}\gamma_{5}\mathcal{A}_{ba}^{\mu}]$$
•
$$\mathcal{L}_{S} = h \operatorname{Tr}[\bar{H}_{a}S_{b}\gamma_{\mu}\gamma_{5}\mathcal{A}_{ba}^{\mu}] + h.c.$$
•
$$\mathcal{L}_{T} = \frac{h'}{\Lambda_{\chi}} \operatorname{Tr}[\bar{H}_{a}T_{b}^{\mu}\gamma^{\nu}(iD_{\mu}\mathcal{A}_{\nu} + iD_{\nu}\mathcal{A}_{\mu})_{ba}\gamma_{5}] + h.c.$$
•
$$\mathcal{L}_{X} = \frac{k'}{\Lambda_{\chi}} \operatorname{Tr}[\bar{H}_{a}X_{b}^{\mu}\gamma^{\nu}(iD_{\mu}\mathcal{A}_{\nu} + iD_{\nu}\mathcal{A}_{\mu})_{ba}\gamma_{5}] + h.c.$$
•
$$\mathcal{L}_{X'} = \frac{1}{\Lambda_{\chi}^{2}} \operatorname{Tr}[\bar{H}_{a}X_{b}^{\mu\nu\nu}[k_{1}\{D_{\mu}, D_{\nu}\}\mathcal{A}_{\lambda} + k_{2}(D_{\mu}D_{\nu}\mathcal{A}_{\lambda} + D_{\nu}D_{\lambda}\mathcal{A}_{\mu})]_{ba}\gamma^{\lambda}\gamma_{5}] + h.c.$$

Operators:

Theoretical predictions in the heavy quark limit

Table: Predictions for the ratio $R = \frac{\Gamma(D_{sJ} \to D^*K)}{\Gamma(D_{sJ} \to DK)}$ for every possible quantum number assignment for $D_{sJ}(2860)$ (*n* is the radial quantum number).

D _{sJ} (2860)	$D_{sJ}(2860) ightarrow DK$	$\frac{\Gamma(D_{sJ} \to D^*K)}{\Gamma(D_{sJ} \to DK)}$
$s_{\ell}^{p} = \frac{1}{2}^{-}, J^{P} = 1^{-}, n = 1$	<i>p</i> -wave	1.23
$s_\ell^P={1\over 2}^+$, $J^P=0^+$, $n=1$	<i>s</i> -wave	0
$s_\ell^{\mathcal{P}}=rac{3}{2}^+$, $J^{\mathcal{P}}=2^+$, $n=1$	<i>d</i> -wave	0.63
$s_{\ell}^{p}=rac{3}{2}^{-}$, $J^{P}=1^{-}$, $n=0$	<i>p</i> -wave	0.06
$s_{\ell}^{p} = \frac{5}{2}^{-}, \ J^{P} = 3^{-}, \ n = 0$	<i>f</i> -wave	0.39

• For $s_{\ell}^{p} = \frac{1}{2}^{-}$, $J^{P} = 1^{-}$, and $s_{\ell}^{p} = \frac{3}{2}^{+}$, $J^{P} = 2^{+} R$ is too large

• For $s_{\ell}^{p} = \frac{1}{2}^{+}$, $J^{P} = 0^{+}$, and $s_{\ell}^{p} = \frac{3}{2}^{-}$, $J^{P} = 1^{-} \Gamma(D_{sJ} \to DK)$ is too large

 $s_{\ell}^{\rho} = \frac{5}{2}^{-1} J^{\rho} = 3^{-1}$ (P. Colangelo, F. De Fazio, S.N., Phys. Lett. B 642 (2006) 48

Theoretical predictions in the heavy quark limit

Table: Predictions for the ratio $R = \frac{\Gamma(D_{sJ} \to D^*K)}{\Gamma(D_{sJ} \to DK)}$ for every possible quantum number assignment for $D_{sJ}(2860)$ (*n* is the radial quantum number).

<i>D_{sJ}</i> (2860)	$D_{sJ}(2860) ightarrow DK$	$\frac{\Gamma(D_{sJ} \to D^*K)}{\Gamma(D_{sJ} \to DK)}$
$s_{\ell}^{p} = \frac{1}{2}^{-}, J^{P} = 1^{-}, n = 1$	<i>p</i> -wave	1.23
$s_{\ell}^{p} = \frac{1}{2}^{+}, J^{P} = 0^{+}, n = 1$	<i>s</i> -wave	0
$s_{\ell}^{p} = \frac{3}{2}^{+}, J^{P} = 2^{+}, n = 1$	<i>d</i> -wave	0.63
$s_{\ell}^{p} = \frac{3}{2}^{-}, J^{P} = 1^{-}, n = 0$	<i>p</i> -wave	0.06
$s_{\ell}^{p} = \frac{5}{2}^{-}, J^{P} = 3^{-}, n = 0$	<i>f</i> -wave	0.39

• For $s_{\ell}^{p} = \frac{1}{2}^{-}$, $J^{P} = 1^{-}$, and $s_{\ell}^{p} = \frac{3}{2}^{+}$, $J^{P} = 2^{+} R$ is too large

• For $s_\ell^p = \frac{1}{2}^+$, $J^P = 0^+$, and $s_\ell^p = \frac{3}{2}^-$, $J^P = 1^- \ \Gamma(D_{sJ} \to DK)$ is too large

 $I_{\ell}^{P} = \frac{5}{2}^{-1} J^{P} = 3^{-1}$ (P. Colangelo, F. De Fazio, S.N., Phys. Lett. B 642 (2006) 48

Theoretical predictions in the heavy quark limit

Table: Predictions for the ratio $R = \frac{\Gamma(D_{sJ} \to D^*K)}{\Gamma(D_{sJ} \to DK)}$ for every possible quantum number assignment for $D_{sJ}(2860)$ (*n* is the radial quantum number).

D _{sJ} (2860)	$D_{sJ}(2860) ightarrow DK$	$\frac{\Gamma(D_{sJ} \to D^*K)}{\Gamma(D_{sJ} \to DK)}$
$s_{\ell}^{p} = \frac{1}{2}^{+}, \ J^{P} = 0^{+}, \ n = 1$	<i>s</i> -wave	0
$s_{\ell}^{p} = \frac{3}{2}^{-}, J^{P} = 1^{-}, n = 0$ $s_{\ell}^{p} = \frac{5}{2}^{-}, J^{P} = 3^{-}, n = 0$	<i>p</i> -wave <i>f</i> -wave	0.06 0.39

• For $s_{\ell}^{p} = \frac{1}{2}^{-}$, $J^{P} = 1^{-}$, and $s_{\ell}^{p} = \frac{3}{2}^{+}$, $J^{P} = 2^{+}$ *R* is too large • For $s_{\ell}^{p} = \frac{1}{2}^{+}$, $J^{P} = 0^{+}$, and $s_{\ell}^{p} = \frac{3}{2}^{-}$, $J^{P} = 1^{-}$ $\Gamma(D_{sl} \to DK)$ is too large

 $s_{\ell}^{p} = \frac{5}{2}^{-} J^{p} = 3^{-}$ (P. Colangelo, F. De Fazio, S.N., Phys. Lett. B **642** (2006) 48)

Theoretical predictions in the heavy quark limit

Table: Predictions for the ratio $R = \frac{\Gamma(D_{sJ} \to D^*K)}{\Gamma(D_{sJ} \to DK)}$ for every possible quantum number assignment for $D_{sJ}(2860)$ (*n* is the radial quantum number).

D _{sJ} (2860)	$D_{sJ}(2860) ightarrow DK$	$\frac{\Gamma(D_{sJ} \to D^*K)}{\Gamma(D_{sJ} \to DK)}$
$s_{\ell}^{P} = \frac{1}{2}^{+}, \ J^{P} = 0^{+}, \ n = 1$	<i>s</i> -wave	0
$s_{\ell}^{p} = \frac{3}{2}^{-}, J^{P} = 1^{-}, n = 0$ $s_{\ell}^{p} = \frac{5}{2}^{-}, J^{P} = 3^{-}, n = 0$	<i>p</i> -wave <i>f</i> -wave	0.06 0.39

• For $s_{\ell}^{p} = \frac{1}{2}^{-}$, $J^{P} = 1^{-}$, and $s_{\ell}^{p} = \frac{3}{2}^{+}$, $J^{P} = 2^{+}$ *R* is too large • For $s_{\ell}^{p} = \frac{1}{2}^{+}$, $J^{P} = 0^{+}$, and $s_{\ell}^{p} = \frac{3}{2}^{-}$, $J^{P} = 1^{-} \Gamma(D_{sJ} \to DK)$ is too large

So. . $s_{\ell}^{p} = \frac{5}{2}^{-} J^{P} = 3^{-}$ (P. Colangelo, F. De Fazio, S.N., Phys. Lett. B **642** (2006) 48) A non negligible signal in $D^{*}K$ is expected (for experimentalists: please look at it)

Theoretical predictions in the heavy quark limit

Table: Predictions for the ratio $R = \frac{\Gamma(D_{sJ} \to D^*K)}{\Gamma(D_{sJ} \to DK)}$ for every possible quantum number assignment for $D_{sJ}(2860)$ (*n* is the radial quantum number).

<i>D_{sJ}</i> (2860)	$D_{sJ}(2860) ightarrow DK$	$\frac{\Gamma(D_{sJ} \to D^*K)}{\Gamma(D_{sJ} \to DK)}$
$s_{\ell}^{p} = \frac{5}{2}^{-}, J^{P} = 3^{-}, n = 0$	<i>f</i> -wave	0.39

• For $s_{\ell}^{p} = \frac{1}{2}^{-}$, $J^{P} = 1^{-}$, and $s_{\ell}^{p} = \frac{3}{2}^{+}$, $J^{P} = 2^{+} R$ is too large

• For $s_{\ell}^{p} = \frac{1}{2}^{+}$, $J^{P} = 0^{+}$, and $s_{\ell}^{p} = \frac{3}{2}^{-}$, $J^{P} = 1^{-} \Gamma(D_{sJ} \to DK)$ is too large

So... $s_{\ell}^{p} = \frac{5}{2}^{-} J^{p} = 3^{-}$ (P. Colangelo, F. De Fazio, S.N., Phys. Lett. B **642** (2006) 48) A non negligible signal in $D^{*}K$ is expected (for experimentalists: please look at it)

Theoretical predictions in the heavy quark limit

Table: Predictions for the ratio $R = \frac{\Gamma(D_{sJ} \to D^*K)}{\Gamma(D_{sJ} \to DK)}$ for every possible quantum number assignment for $D_{sJ}(2860)$ (*n* is the radial quantum number).

<i>D</i> _{sJ} (2860)	$D_{sJ}(2860) ightarrow DK$	$\frac{\Gamma(D_{sJ} \to D^*K)}{\Gamma(D_{sJ} \to DK)}$
$s_{\ell}^{p} = \frac{5}{2}^{-}, J^{P} = 3^{-}, n = 0$	<i>f</i> -wave	0.39

• For $s_{\ell}^{p} = \frac{1}{2}^{-}$, $J^{P} = 1^{-}$, and $s_{\ell}^{p} = \frac{3}{2}^{+}$, $J^{P} = 2^{+}$ R is too large

• For $s_{\ell}^{p} = \frac{1}{2}^{+}$, $J^{P} = 0^{+}$, and $s_{\ell}^{p} = \frac{3}{2}^{-}$, $J^{P} = 1^{-} \Gamma(D_{sJ} \to DK)$ is too large

So...

$$s_{\ell}^{p} = \frac{5}{2}^{-} J^{P} = 3^{-}$$
 (P. Colangelo, F. De Fazio, S.N., Phys. Lett. B **642** (2006) 48)
A non negligible signal in $D^{*}K$ is expected (for experimentalists: please look at it)

Theoretical predictions in the heavy quark limit

Table: Predictions for the ratio $R = \frac{\Gamma(D_{sJ} \to D^*K)}{\Gamma(D_{sJ} \to DK)}$ for every possible quantum number assignment for $D_{sJ}(2860)$ (*n* is the radial quantum number).

<i>D_{sJ}</i> (2860)	$D_{sJ}(2860) ightarrow DK$	$\frac{\Gamma(D_{sJ} \to D^*K)}{\Gamma(D_{sJ} \to DK)}$
$s_{\ell}^{p} = \frac{5}{2}^{-}, J^{P} = 3^{-}, n = 0$	<i>f</i> -wave	0.39

• For $s_{\ell}^{p} = \frac{1}{2}^{-}$, $J^{P} = 1^{-}$, and $s_{\ell}^{p} = \frac{3}{2}^{+}$, $J^{P} = 2^{+}$ R is too large

• For $s_{\ell}^{p} = \frac{1}{2}^{+}$, $J^{P} = 0^{+}$, and $s_{\ell}^{p} = \frac{3}{2}^{-}$, $J^{P} = 1^{-} \Gamma(D_{sJ} \to DK)$ is too large

So...

$$s_{\ell}^{p} = \frac{5}{2}^{-} J^{P} = 3^{-}$$
 (P. Colangelo, F. De Fazio, S.N., Phys. Lett. B **642** (2006) 48)
A non negligible signal in $D^{*}K$ is expected (for experimentalists: please look at it)

Theoretical predictions in the heavy quark limit

Table: Prediction for the ratio $\frac{\Gamma(D_{sJ} \rightarrow D_s \eta)}{\Gamma(D_{sJ} \rightarrow DK)}$ for every possible quantum numbers assignment for $D_{sJ}(2860)$.

D _{sJ} (2860)	$\frac{\Gamma(D_{sJ} \to D_s \eta)}{\Gamma(D_{sJ} \to DK)}$
$s_{\ell}^{p} = \frac{1}{2}^{-}, J^{P} = 1^{-}, n = 1$	0.27
$s_{\ell}^{P} = \frac{1}{2}^{+}, J^{P} = 0^{+}, n = 1$	0.34
$s_{\ell}^{p}=rac{3}{2}^{+}$, $J^{P}=2^{+}$, $n=1$	0.19
$s_{\ell}^{p} = \frac{3}{2}^{-}, J^{P} = 1^{-}, n = 0$	0.23
$s_{\ell}^{p} = \frac{5}{2}^{-}, J^{P} = 3^{-}, n = 0$	0.13

A small signal in the $D_s\eta$ mode is expected (for experimentalists: please look at this too (a little bit more difficult))

・何ト イヨト イヨト

Theoretical predictions in the heavy quark limit

Table: Prediction for the ratio $\frac{\Gamma(D_{sJ} \rightarrow D_s \eta)}{\Gamma(D_{sJ} \rightarrow DK)}$ for every possible quantum numbers assignment for $D_{sJ}(2860)$.

D _{sJ} (2860)	$\frac{\Gamma(D_{sJ} \to D_s \eta)}{\Gamma(D_{sJ} \to DK)}$
$s_{\ell}^{p} = \frac{1}{2}^{-}, J^{P} = 1^{-}, n = 1$	0.27
$s_{\ell}^{P} = \frac{1}{2}^{+}, J^{P} = 0^{+}, n = 1$	0.34
$s_{\ell}^{p} = \frac{3}{2}^{+}, J^{P} = 2^{+}, n = 1$	0.19
$s_{\ell}^{p} = \frac{3}{2}^{-}, J^{P} = 1^{-}, n = 0$	0.23
$s_{\ell}^{p} = \frac{5}{2}^{-}, J^{P} = 3^{-}, n = 0$	0.13

A small signal in the $D_s\eta$ mode is expected (for experimentalists: please look at this too (a little bit more difficult))

Properties Heavy-Light c5 mesons spectroscopy Framework and Predictions Conclusions

Conclusions

The assignment $J^P = 3^-$ is favored, but only experiments will be able to confirm it

Figure: Proposed cs spectrum

Other interpretation

First radial excitation of $D^*_{sJ}(2317)$: 0⁺ of the $s^P_\ell=1/2^+$ doublet (F.E. Close, E. van Beveren)

Properties Heavy-Light c5 mesons spectroscopy Framework and Predictions Conclusions

Conclusions

The assignment $J^P = 3^-$ is favored, but only experiments will be able to confirm it

Figure: Proposed cs spectrum

Other interpretation

First radial excitation of $D^*_{sJ}(2317):~0^+$ of the $s^P_\ell=1/2^+$ doublet (F.E. Close, E. van Beveren)

Properties Heavy-Light c5 mesons spectroscopy Framework and Predictions Conclusions

Conclusions

The assignment $J^P = 3^-$ is favored, but only experiments will be able to confirm it

Figure: Proposed cs spectrum

Other interpretation

First radial excitation of $D_{sJ}^*(2317)$: 0⁺ of the $s_{\ell}^P = 1/2^+$ doublet (F.E. Close, E. van Beveren) (D^*K signal is crucial)

Properties Heavy-Light c5 mesons spectroscopy Framework and Predictions Conclusions

Remark

After the publication of our paper Belle collaboration published some data which supports the $J^P=3^-$ assignment

Figure: Invariant mass of the $D^0 K^+$ system in the process $B^+ \to D^0 \overline{D}^0 K^+$ (Belle Collaboration, hep-ex/0608031, August 2006)

Outline D_{5.1}(2860) X(3872) Properties Interpretation (?) $X \rightarrow D\bar{D}\gamma$ Conclusions

X(3872)

- Found in the $J/\psi\pi^+\pi^-$ distribution, both in *B* decays $(B^{-(0)} \rightarrow K^{-(0)}X)$, and in $p\bar{p}$ annihilation
- No evidence of resonances in the charged channel $J/\psi\pi^\pm\pi^0$ or $J/\psi\eta$

• For the X meson produced in B decays ${B(B^0 o K^0 X) \over B(B^+ o K^+ X)} = 0.61 \pm 0.36 \pm 0.06$

- Not observed in e⁺e⁻ annihilation
- $M = 3871.9 \pm 0.6$ MeV
- $\bullet\,$ Only an upper bound for the width: $\Gamma<2.3$ MeV (90% CL)
- Angular distribution of the final state compatible with $J^{P}=1^{+}$
- $X \to J/\psi\gamma$ observed with ${B(X \to J/\psi\gamma) \over B(X \to J/\psi\pi^+\pi^-)} = 0.19 \pm 0.07 \to C = +1$
- $J/\psi \pi^+ \pi^- \pi^0$ observed with $\frac{B(X \to J/\psi \pi^+ \pi^- \pi^0)}{B(X \to J/\psi \pi^+ \pi^-)} = 1.0 \pm 0.4 \pm 0.3 \to \text{isospin}$ violation
- If 2^3P_1 is identified with Y(3940)
 ightarrow overpopulation of $c\bar{c} \ 1^{++}$ states
- The mass of the resonance coincides with the mass of the $D^{*0}\overline{D}^0$ pair
- Near-threshold $D^0 \overline{D}^0 \pi^0$ enhancement in $B \to D^0 \overline{D}^0 \pi^0 K$ decay with central value of the mass 4 MeV higher than PDG value

Outline D_{5.1}(2860) X(3872) Properties Interpretation (?) $X \rightarrow D\bar{D}\gamma$ Conclusions

X(3872)

- Found in the $J/\psi\pi^+\pi^-$ distribution, both in *B* decays $(B^{-(0)} \rightarrow K^{-(0)}X)$, and in $p\bar{p}$ annihilation
- $\bullet\,$ No evidence of resonances in the charged channel $J/\psi\pi^\pm\pi^0$ or $J/\psi\eta$

• For the X meson produced in B decays ${B(B^0 o K^0 X) \over B(B^+ o K^+ X)} = 0.61 \pm 0.36 \pm 0.06$

- Not observed in e⁺e⁻ annihilation
- $M = 3871.9 \pm 0.6$ MeV
- $\bullet\,$ Only an upper bound for the width: $\Gamma<2.3$ MeV (90% CL)
- Angular distribution of the final state compatible with $J^{P}=1^{+}$
- $X \to J/\psi\gamma$ observed with ${B(X \to J/\psi\gamma) \over B(X \to J/\psi\pi^+\pi^-)} = 0.19 \pm 0.07 \to C = +1$
- $J/\psi \pi^+ \pi^- \pi^0$ observed with $\frac{B(X \to J/\psi \pi^+ \pi^- \pi^0)}{B(X \to J/\psi \pi^+ \pi^-)} = 1.0 \pm 0.4 \pm 0.3 \to \text{isospin}$ violation
- If 2^3P_1 is identified with Y(3940)
 ightarrow overpopulation of $c\bar{c} \ 1^{++}$ states
- The mass of the resonance coincides with the mass of the $D^{*0}\overline{D}^0$ pair
- Near-threshold $D^0 \overline{D}^0 \pi^0$ enhancement in $B \to D^0 \overline{D}^0 \pi^0 K$ decay with central value of the mass 4 MeV higher than PDG value

Outline D_{SJ}(2860) X(3872) Properties Interpretation (?) $X \rightarrow D\bar{D}\gamma$ Conclusions

X(3872)

- Found in the $J/\psi\pi^+\pi^-$ distribution, both in *B* decays $(B^{-(0)} \to K^{-(0)}X)$, and in $p\bar{p}$ annihilation
- $\bullet\,$ No evidence of resonances in the charged channel $J/\psi\pi^\pm\pi^0$ or $J/\psi\eta$

• For the X meson produced in B decays ${B(B^0 o K^0 X) \over B(B^+ o K^+ X)} = 0.61 \pm 0.36 \pm 0.06$

- Not observed in e^+e^- annihilation
- $M = 3871.9 \pm 0.6$ MeV
- $\bullet\,$ Only an upper bound for the width: $\Gamma<2.3$ MeV (90% CL)
- Angular distribution of the final state compatible with $J^{P}=1^{+}$
- $X \to J/\psi\gamma$ observed with ${B(X \to J/\psi\gamma) \over B(X \to J/\psi\pi^+\pi^-)} = 0.19 \pm 0.07 \to C = +1$
- $J/\psi \pi^+ \pi^- \pi^0$ observed with $\frac{B(X \to J/\psi \pi^+ \pi^- \pi^0)}{B(X \to J/\psi \pi^+ \pi^-)} = 1.0 \pm 0.4 \pm 0.3 \to \text{isospin}$ violation
- If 2^3P_1 is identified with Y(3940)
 ightarrow overpopulation of $c\bar{c} \ 1^{++}$ states
- The mass of the resonance coincides with the mass of the $D^{*0}\overline{D}^0$ pair
- Near-threshold $D^0 \overline{D}^0 \pi^0$ enhancement in $B \to D^0 \overline{D}^0 \pi^0 K$ decay with central value of the mass 4 MeV higher than PDG value

• Charmonium?

X(3872)

- Molecule(bound state $D^0 \bar{D}^{*0}$)?
- qq qq dq diquark-anti-diquark?

3

- 4 同 1 4 三 1 4 三 1

• Molecule(bound state $D^0 - \bar{D}^{*0}$)?

X(3872)

Stefano Nicotri New mesons with open and hidden charm

3

(日) (四) (王) (王) (王)

X(3872): molecule?

Definition

$$|X(3872)\rangle = a |D^{*0}\overline{D}^{0} + \overline{D^{*}}^{0}D^{0}\rangle + b |\psi\rangle$$

- $|D^{*0}\overline{D}^0 + \overline{D^*}^0 D^0 \rangle \rightarrow$ "molecular" part \rightarrow peripheral interactions
- $|\psi\rangle = |D^{*+}D^- + D^{*-}D^+\rangle + \ldots \rightarrow$ "core" part \rightarrow all other interactions
- $a \gg b$ (molecule dominates)

Remarks

- The decay of the molecule is mainly due to the decay of its component
- $X \to D^+ D^- \gamma$ suppressed with respect to $X \to D^0 \bar{D}^0 \gamma$
- Observation of such a suppression \Rightarrow signature for the molecule

- 4 同 ト - 4 回 ト - 4 回 ト

X(3872): molecule?

Definition

$$|X(3872)\rangle = a |D^{*0}\overline{D}^{0} + \overline{D^{*}}^{0}D^{0}\rangle + b |\psi\rangle$$

•
$$|D^{*0}\overline{D}^0 + \overline{D^{*0}}D^0
angle o$$
 "molecular" part o peripheral interactions

•
$$|\psi
angle = |D^{*+}D^- + D^{*-}D^+
angle + \ldots o$$
 "core" part o all other interactions

Remarks

- The decay of the molecule is mainly due to the decay of its component
- $X \to D^+ D^- \gamma$ suppressed with respect to $X \to D^0 \bar{D}^0 \gamma$
- \bullet Observation of such a suppression \Rightarrow signature for the molecule

OutlineProperties $D_{s_1}(2860)$ Interpretation (?) $X'_{(3872)}$ $Z'_{Conclusions}$

Considering X(3872) as a pure $Q\bar{Q}$ meson the radiative transition $X \rightarrow D\bar{D}\gamma$ could be considered as the sum of the three processes:

Two unknown parameter

 $X \rightarrow D\bar{D}\gamma$

- c governing the radiative $\langle X|\psi(3770)\gamma\rangle$ matrix element
- \tilde{g}_1 governing the couplings $XD\bar{D}^*$

-

Figure: Ratio of charged $X \to D^+D^-\gamma$ to neutral $X \to D^0\bar{D}^0\gamma$ widths versus the ratio of hadronic parameters c/\tilde{g}_1

- In the region $c/\widetilde{g}_1
 ightarrow 0$ the process $X
 ightarrow D^* \bar{D}
 ightarrow DD\gamma$ dominates
- In the region $c/\widetilde{g}_1 o \infty$ the process $X o \psi(3770)\gamma o DD\gamma$ dominates

Result

There is always a suppression of the charged channel with respect to the neutral one. The ratio is always smaller than 0.7 Ratio $\frac{\Gamma(X \to D^+ D^- \gamma)}{\Gamma(X \to D^0 \bar{D}^0 \gamma)}$

Figure: Ratio of charged $X \to D^+D^-\gamma$ to neutral $X \to D^0\bar{D}^0\gamma$ widths versus the ratio of hadronic parameters c/\tilde{g}_1

- In the region $c/\widetilde{g}_1
 ightarrow 0$ the process $X
 ightarrow D^* \bar{D}
 ightarrow DD\gamma$ dominates
- In the region $c/\widetilde{g}_1 \to \infty$ the process $X \to \psi(3770)\gamma \to DD\gamma$ dominates

Result

There is always a suppression of the charged channel with respect to the neutral one. The ratio is always smaller than 0.7

Outline X (3872)

$X \rightarrow D\bar{D}\gamma$

Photon spectrum

- $c/\widetilde{g}_1 = 1 \rightarrow D^*$ dominates
- Peak at $E_{\gamma} \simeq 139$ MeV $ightarrow D^{*}$ decay

- $c/\widetilde{g}_1 = 300 \rightarrow \psi(3770)$ dominates
- Peak at $E_{\gamma} \simeq 100$ MeV
- Structure at $E_{\gamma} \simeq 139 \; {
 m MeV}$

- Evident suppression
- Peak at $E_{\gamma} \simeq 125$ MeV

- Evident suppression
- No structure at $E_{\gamma} \simeq 139$ MeV < (¶) ►

э

Outline D_{s.J} (2860) X (3872) Properties Interpretation (? $X \rightarrow D\bar{D}\gamma$ Conclusions

Summary, conclusions and remarks

Summary

Assuming for X(3872) a pure $c\bar{c}$ structure:

- The charged channel $X \to D^+ D^- \gamma$ is suppressed with respect to $X \to D^0 \overline{D}^0 \gamma$ over all the range of the parameters governing the processes
- The photon spectrum of all the processes $X \rightarrow D\bar{D}\gamma$ is different with respect to the one resulting from assuming a molecular structure for X(3872)

Conclusions

- The suppression of the charged channel $X \to D^+D^-\gamma$ with respect to the neutral $X \to D^0\bar{D}^0\gamma$ one cannot be taken as a signature of the molecular structure of X(3872)
- Since at present the charmonium option for X(3872) cannot be simply excluded, the analysis of the photon spectrum of radiative $X \rightarrow D\bar{D}\gamma$ decays can be useful in clarifying the situation

P. Colangelo, F. De Fazio, SN, hep-ph/0701052

- 4 同 1 4 三 1 4 三 1

Charmonium spectrum

3 → 2

Regge trajectories

Figure: Chew-Frautschi plot for $c\bar{s}$ states. The $\alpha = 0$ point corresponds to the doublet $s_{\ell}^{P} = \frac{1}{2}^{-}$ $(t = \overline{M}_{H}^{2})$, the $\alpha = 1$ points to the states with $s_{\ell}^{P} = \frac{1}{2}^{+}$, $\frac{3}{2}^{+}$ $(t = \overline{M}_{S,T}^{2})$. The $\alpha = 2$ point represents the $D_{sJ}(2860)$ meson.

э

.∃...>