Fisica del *Tau* e del *Charm* a BaBar

Riccardo Cenci University of Pisa

& INFN Pisa (Italy)

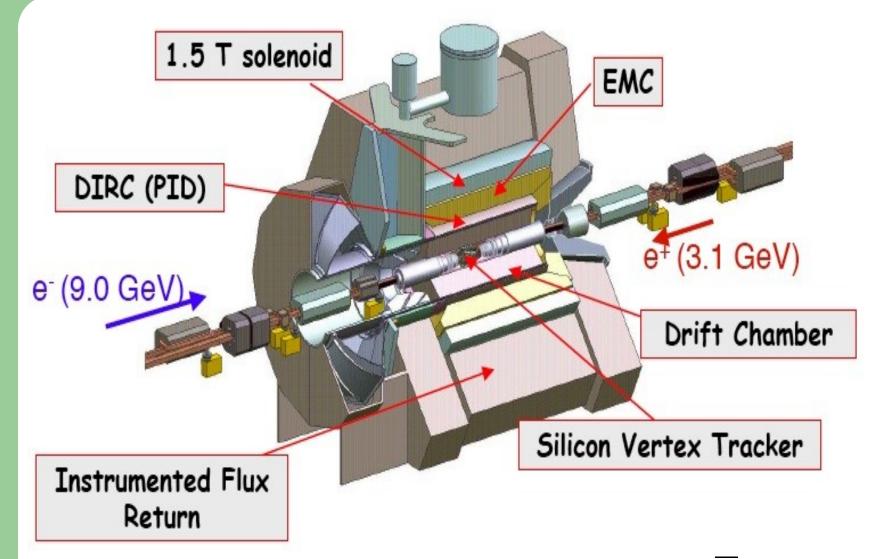
(on behalf of **BaBar** Collaboration)

Incontri di Fisica delle Alte Energie, Napoli, 12 Aprile 2007

Outlines

• Tau physics:

- Hadronic tau decays
- Lepton Flavour and Baryonic Number Violation


•Charm physics:

- Mesons: decays, amplitudes, form factor
- New charmonium(-like) states
- Heavy quark models test and new baryonic states
- Mixing D⁰ not discussed (see talk by G. Piredda)

Conclusions

Notes: Most results in this talk are **PRELIMINARY** if not otherwise specified Riccardo Cenci, IFAE 2007 **2** Napoli, 12 Aprile 2007

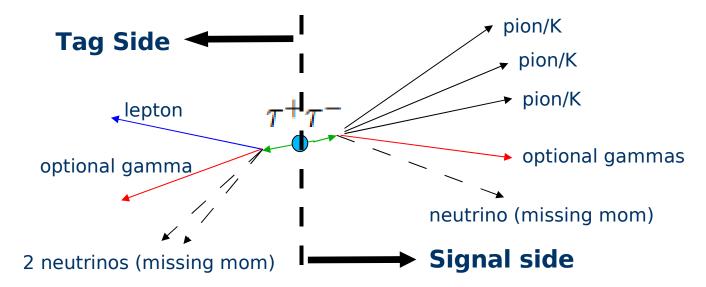
BaBar detector at Slac

Same cross-sections for $\tau \tau$, $C\overline{C}$ and bb: ~1nb

Riccardo Cenci, IFAE 2007

3

Tau had decays: motivation


 Strong interactions 	$\overline{\tau^{-} \text{ Decay}}$	Sample (fb^{-1})	
effects and estimate	$\frac{\pi^{-}\pi^{-}\pi^{+}\nu_{\tau}}{\pi^{-}\pi^{+}\nu_{\tau}}$		
fundamental	$K^-\pi^-\pi^+ u_ au$		
parameter of the	$K^-\pi^-K^+\nu_\tau$	944	
Standard Model, like	$K^- K^- K^+ \nu_{\tau}$	344	
α_s , $ V_{\mu s} $ using the	$\phi \pi^- u_{ au}$		
available knowledge of	$\frac{\phi K^- \nu_{\tau}}{K^- 0}$	220	
m _s .	$\frac{K^{-}\pi^{0}\nu_{\tau}}{\pi^{-}\pi^{-}\pi^{+}\pi^{0}\nu_{\tau}}$	230	
•A combined $ V_{\mu\nu} /m_{\nu}$ fit	$\pi^+\pi^+\pi^+ u_ au^-$	210	
is also possible	$\pi^{-}\pi^{-}\pi^{+}\eta\nu_{\tau}$		
	$f_1(1285)(\to \pi^+\pi^-\eta)\pi^-\nu_{\tau}$	234	
	$f_1(1285)\pi^-\nu_{\tau}$	201	
Deferences	$\underline{\eta'(958)\pi^-\nu_\tau}$		

References:

- •Maltman, Phys. Lett. B 639 (2006)
- •Gamiz et al, Phys. Rev. Lett. 94 (2005) 011803, hep-ph/0408044
- Gamiz et al, J. High Energy Phys. 01 (2003) 060, hep-ph/0212230 Riccardo Cenci, IFAE 2007 **4** Napoli, 12 Aprile 2007

Tau had decays: general aspects

- Two hemispheres in CM frame using thrust, looking for 1-3 (or 1-1) topology with net charge 0
- Reduce **<u>bkg</u>** using: thrust, transverse Missing Momentum, veto on π^0 , K_s, photon conversion and net neutral energy

- Remaining **bkg** are 3-prong wrong decays with more π^0 and K^0 , kaon/pion misidentification
- Main systematics are from cross-feed between channels (2-4%), π⁰ and η efficiency (3.0, 5.0%), luminosity*cross-section (2.3%) (Forthcoming improvement) Riccardo Cenci, IFAE 2007
 5 Napoli, 12 Aprile 2007

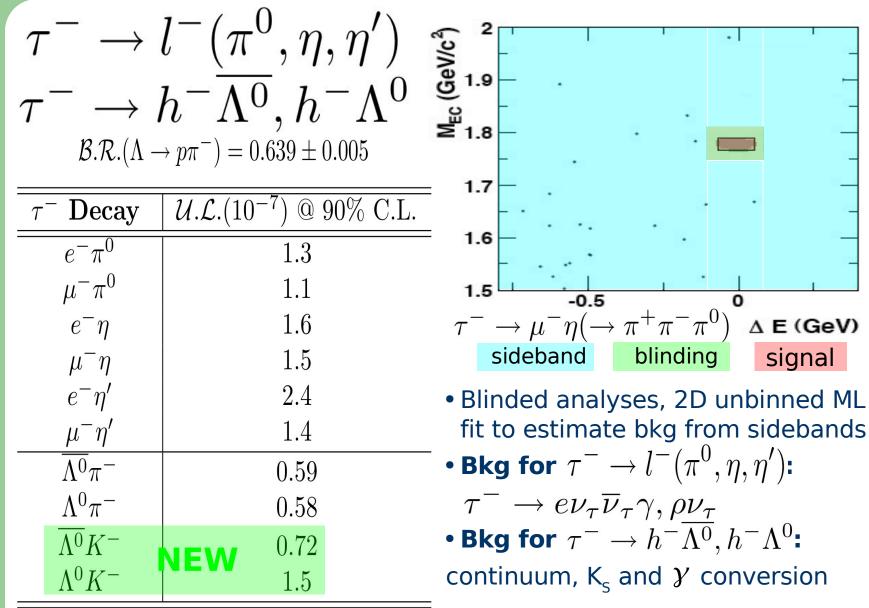
Tau had decays: summary

• Some uncertainties are not so high but already systematic dominated, more work ongoing on this

	$ au^-$ Decay	$\mathcal{B}.\mathcal{F}.$	$\frac{\sigma_{Stat}}{\sigma_{Syst}}$ Ratio	
	$\pi^-\pi^-\pi^+ u_ au$	$(9.11 \pm 0.01 \pm 0.25) \times 10^{-2}$	0.04	
	$K^-\pi^-\pi^+ u_ au$	$(2.88 \pm 0.02 \pm 0.11) \times 10^{-3}$	0.18	
	$K^-\pi^-K^+\nu_{\tau}$	$(1.373 \pm 0.011 \pm 0.037) \times 10^{-3}$	0.3	
(inclu	sive)-> $K^-K^-K^+ u_ au$	$(1.59 \pm 0.14 \pm 0.09) \times 10^{-5}$	1.56	
N	EV $\phi \pi^- \nu_{ au}$	$(3.49 \pm 0.55 \pm 0.32) \times 10^{-5}$	1.72	
	$\phi K^- u_{ au}$	$(3.48 \pm 0.20 \pm 0.26) \times 10^{-5}$	0.77	
	$K^-\pi^0 u_{ au}$	$(4.39 \pm 0.03 \pm 0.21) \times 10^{-3}$	0.14	
	$\pi^-\pi^-\pi^+\pi^0 u_ au$	$(4.39 \pm 0.01 \pm 0.21) \times 10^{-2}$	0.05	
	$\omega \pi^- u_{ au}$	$(1.97 \pm 0.01 \pm 0.10) \times 10^{-2}$	0.10	
	$\pi^-\pi^-\pi^+\eta u_{ au}$	$(1.84 \pm 0.09 \pm 0.13) \times 10^{-4}$	0.7	
	$f_1(1285)(\to \pi^+\pi^-\eta)\pi^-\nu_{\tau}$	$(1.33 \pm 0.11 \pm 0.07) \times 10^{-4}$	1.6	
	$f_1(1285)\pi^-\nu_{\tau}$	$(3.83 \pm 0.32 \pm 1.20) \times 10^{-4}$	0.27	

mostly from $f_1, \mathcal{B}.\mathcal{R}.(f_1(1285) \to \pi^- \pi^+ \eta) = 0.35 \pm 0.11$

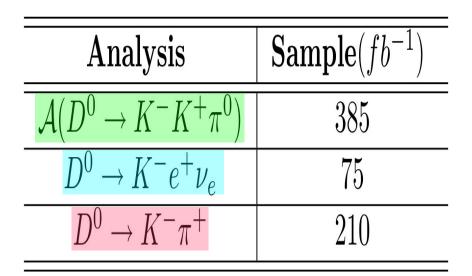
LFV decays: motivation & aspects


- Neutrino mixing permits tau LFV decays at very low rates
- But New Physics models allow for LFV rates that are within experimental reach (SUSY+Seesaw, Heavy Dirac neutrinos, Two Higgs doublet, R-parity violating SUSY, Flavour changing Z' with non-universal couplings)
- With baryonic tau decays, test of *B-L* number violation

$ au^-$ Decay	Sample (fb^{-1})	-
$\frac{l^-\pi^0}{\substack{l^-\eta\\l^-\eta'}}$	339 →	PRL 98, 061803 (2007)
$\overline{\Lambda^0}h^- (B - L \text{ conserving})$ $\Lambda^0h^- (B - L \text{ violating})$	237 →	hep-ex/0607040

- **Topology** similar to hadronic decays, no neutrino on signal side
- Systematics: variation of signal box by photon energy scale and resolution (2-4%), Λ reco (5%) and tracking (4%).

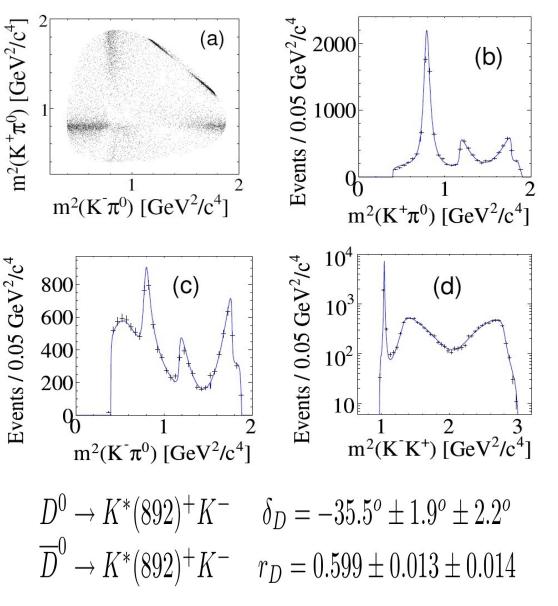
Riccardo Cenci, IFAE 2007 **7** Napoli, 12 Aprile 2007


Tau LFV decays: summary

8

Charm mesons: motivation & aspects

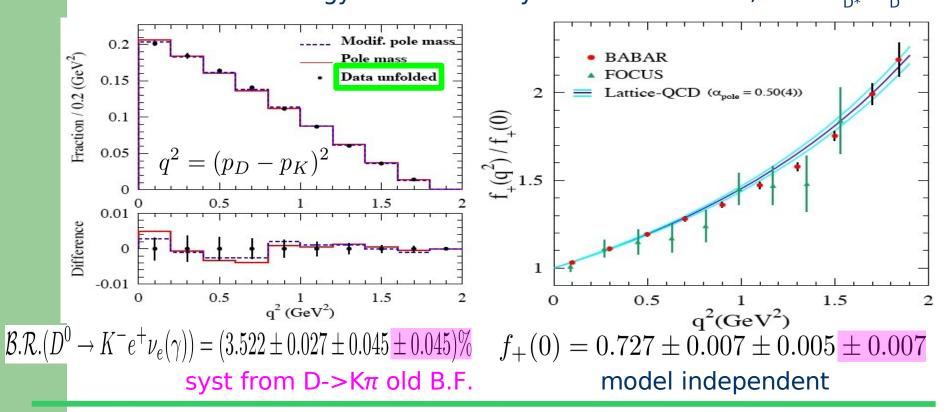
- Amplitude analyis from
 Dalitz plot of 3-body decays
- Extraction of form factors from semi-leptonic decays
- Precise measurement of 2body B.F. used in D and B physics for other analyses



- **Recostruction:** event is not always fully reconstructed, clean sample using a kinematic fit of decay tree
- Constraint on $\Delta m = M_{D*} M_D$, $D^* > D\pi_s$, soft pion
- Some analyses take D's from well-known B sample
- Systematics: particle identification and tracking (~1%), models and fitting procedures

Riccardo Cenci, IFAE 2007

Charm mesons: amplitude


- $D^0 \to K^- K^+ \pi^0$
- Isobar model $D^0 \rightarrow res(\rightarrow AB)C$
- Different models for intermediate states
- Excellent agreement with no need for higher resonance than K(1430)
- Strong phase and amplitudes ratio

$$D^0 \to K^- e^+ \nu_e$$

Form factor

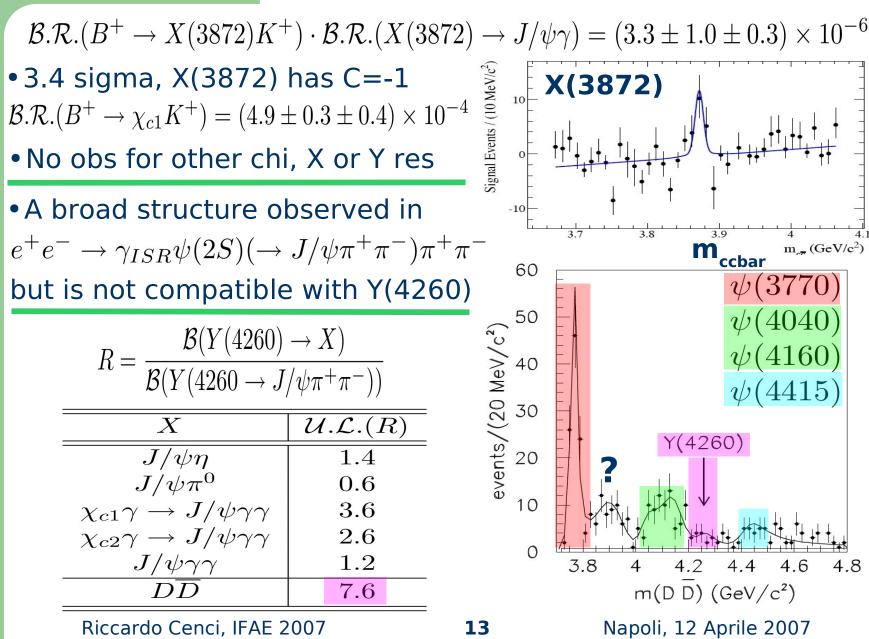
2 form factor, one suppressed for e mass, other one, f₊(q²), can be parametrized with different model (Taylor exp, poles, simple or mod)
 D mom and nu energy constrained by the rest of events, Δm=M_{D*}-M_D

• D->K π Measured from B partial semileptonic reconstruction $\mathcal{B}.\mathcal{R}.(D^0 \to K^-\pi^+) = (4.007 \pm 0.037 \pm 0.070)\%$ • Same precision like the average of all the previous meas.

Riccardo Cenci, IFAE 2007 **11** Napoli, 12 Aprile 2007

New charm states: motivation & aspects

- Classification of new meson states, like X(3872) et al., as charmonium states or other (diquark-antidiquark, DD molecule)
- Test of models for the heavy quark jet fragmentation with spectrum of charmed baryons
- Classification of new excited baryonic states

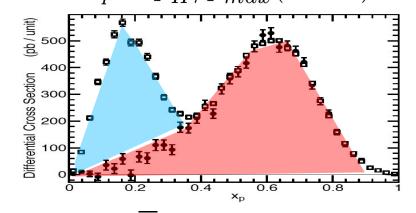

Analysis	$\mathbf{Sample}(fb^{-1})$
$B^+ \to X(3872)(\to J/\psi\gamma)K^+ B^+ \to (\chi_{c1}, \chi_{c2}, Y(3940), Z(3930))K^+$	260
$e^+e^- \to \gamma_{ISR}(J/\psi\gamma\gamma, J/\psi\pi^+\pi^-)$	230
$e^+e^- \to \gamma_{ISR}\psi(2S)(\to J/\psi\pi^+\pi^-)\pi^+\pi^-$	298
$e^+e^- \to \gamma_{ISR} D\overline{D}$	289
$e^+e^- \to \Lambda_c^+ (\to pK^-\pi^+)X$	90
$\Xi_c(2980), \Xi_c(3077) \to \Lambda_c^+ K^- \pi^+$	315
$e^+e^- \rightarrow ({\Xi'}_c^+, {\Xi'}_c^0)X$	232
$e^+e^- \to \Omega^*_c (\to \Omega^0_c \gamma) X$	232
$\Omega_c^0 \to \Omega^-(\pi^+, \pi^+\pi^0, \pi^+\pi^-\pi^+)$	230

- **Tecnique:** Initial State Radiation or well-known B sample, J/psi reconstructed in 2 e, μ
- Partial reconstruction with a kinematic fit from final products.
- **Systematics**: tracking, model, fitting procedure, other B.F. (shown separately if relevant)

Riccardo Cenci, IFAE 2007

Ó O

Charmonium(-like) states



 $e^+e^- \to \Lambda_c^+ X$

Baryonic spectrum using $x_p \equiv p_H^*/p_{max}^*(CMS)$

 Separate components using on-res and off-res sample

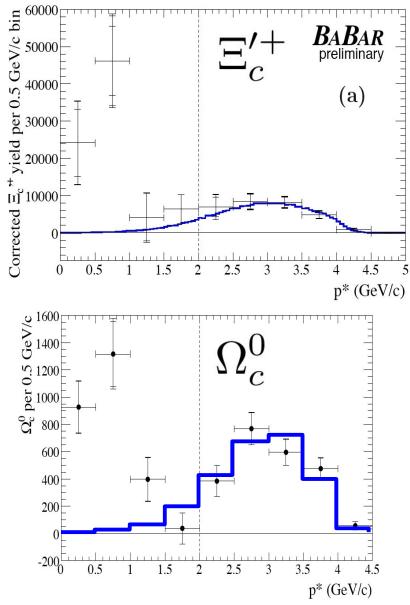
- Test of various models:
 - $C\overline{C}$: good agreement using Lund and Bowler description
 - B decays: not so good agreement, need more studies

From $C\overline{C}$ events From B decays 0.50 BaBar BaBar dxp((s)) dN_{Ac}(s)) dN_{Ac}(s) (1/N/1) 0.20 Λ_{c} Belle 0.15 CLEO $(1/N_{q\bar{q}}) dN_{\Lambda_{c}}^{q\bar{q}}/dx_{p}$ • Λ_c CLEO Belle **▲** Ξ_c BaBar 0.05 0.10 02 0.5 04 03 04 $N_{\Lambda c}^{qq} = 0.057 \pm 0.002(exp) \pm 0.015(BF)$ $N_{\Lambda c}^{\Upsilon} = 0.045 \pm 0.003(exp) \pm 0.012(BF)$ $\mathcal{B}.\mathcal{R}.(\Lambda_c^+ \to pK^-\pi^+) = (5.0 \pm 1.3)\%$ N=# of Λ_c per hadronic events Riccardo Cenci, IFAE 2007 Napoli, 12 Aprile 2007 14

Other Charm baryons results

15

hep-ex/0607042 hep-ex/0607086


nep-ex/0703030

- $\Xi_c^{\prime +} \to \Xi_c^+ \gamma, \Xi_c^{\prime 0} \to \Xi_0^+ \gamma$
- Agreement of $C\overline{C}$ production with Bowler model
- First observation in B decays
- Excited states observation: $\Xi_c(2980)^+(7.0\sigma), \Xi_c(3077)^+(8.6\sigma)$

$$\Omega_c^0 \to \Omega^- \pi^+$$

- Agreement of $C\overline{C}$ production with Bowler model
- Production in B decays lower than $\Lambda_c^{\scriptscriptstyle +,\cdot} \Xi_c^0$
- Excited states observation:

$$\Omega^*_c
ightarrow \Omega^0_c \gamma(5.2\sigma)$$

Riccardo Cenci, IFAE 2007

Conclusions

- Many tau decays (hadronic and LFV): 2 new measurements and 2 new upper limits, precision improvement on others
- •A lot of results from charmed particle sudies: B.F., classification of new states, but also form factors measurements and fragmentation model tests
- B-factory high luminosity has been fundamental for all these measurements, LFV searches in particular
- BaBar data-taking goes on until 2008, but we could do a big jump having 10 times or more statistics (SuperB factory)

For more details, see:

- Tau: talks by **Banerjee, Lafferty, Nugent, Sobie** at TAU06, http://tau06.sns.it/program
- Charm: talks by **Grenier, Zhang** at MoriondQCD07, http://moriond.in2p3.fr/QCD/2007/MorQCD07Prog.html

Riccardo Cenci, IFAE 2007

16

The end...

Riccardo Cenci, IFAE 2007