

- Un cenno a ∆m²₁₂ e KamLAND
- Misura di θ_{13}

Contrade à l'evel

- Double Chooz
- •Daya Bay, RENO, Angra
- Un'idea per la gerarchia di massa

The discovery of the neutrino

1955- Cowan and Reines: detection of the neutrino (v_e), with an experiment at the Savannah River nuclear power plant.

"The Neutrino", F. Reines and C.L. Cowan, Jr., Nature 178, 446 (1956)

Reactor neutrinos

Prompt photons from e^+ annih E_e = E_v + 1.8 MeV + O(E_e/m_n)

Delayed photons from **n** capture on H or on dedicated nuclei (Gd: $\Delta t \sim 30 \ \mu s$ E ~ 8 MeV)

 $\overline{\nu}_e$

🕇 X(À, Z)

Oscillations with reactor vs

 $\langle E_v \rangle \sim$ few MeV \Rightarrow Disappearance experiments

Δm_{12} @ KamLAND

Prospects of KamLAND

Shirai @NOW06

KamLAND + Solar

95% CL

0.5

0.6

0.7

clobal best fit

Reduce systematic error by a new calibration system in place of the vertical-axis calibration.

Systematic error : 6.5%

Detector (%) Fiducial vol. 4.7 Energy threshold 2.3 Efficiency of cuts 1.6 Live time 0.06

Reactor power 2.1 Fuel composition 1.0 v_{P} spectra 2.5 Cross section 0.2

0.8

θ_{13} at reactors

- $P(v_e \rightarrow v_e)$ independent of δ -CP, weak dependence on Δm_{21}^2
- O(MeV) + small distances ⇒ Matter effects negligible ⇒ measurement independent of sign(∆m²₁₃)
- "Clean" θ_{13} measurement, complementary to beams
- Experiments can be carried out on a short time scale and for relatively low cost => input on decision for future beams

θ_{13} : what we know

How can we improve?

CHOOZ : $R_{osc} = 1.01 \pm 2.8\%$ (stat) $\pm 2.7\%$ (syst)

• Statistics

- More powerful reactor (multi-core)
- Larger detection volume
- Longer exposure
- **Experimental error**: v flux+spectrum and cross-section uncertainty
 - Multi-detector \rightarrow relative measurement
 - Identical detectors to reduce experimental systematics (normalisation, calibration ...)
- Background
 - Improve detector design Jarger S/B
 - Increase overburden
 - Improve bkg knowledge by direct measurements

θ_{13} at reactors: new experimental concept

θ_{13} at reactors

Far vs Near : two independent sets of information Normalisation / Spectrum distortion Dominating at intermediate / high statistics

θ_{13} at reactors : Backgrounds

Accidental bkg:

- e⁺-like signal: radioactivity from materials, PMTs, surrounding rock (²⁰⁸TI). (Rate=R_e)
- n signal: n from cosmic μ spallation, thermalised in detector and captured on Gd (R_n);
 - γ mimicking n
- \Rightarrow Accidental coincidence

Rate = $R_e \times R_n \times \Delta t$

Correlated bkg:

- fast n (by cosmic μ) recoil on p (low energy) and captured on Gd
- long-lived (⁹Li, ⁸He) β -decaying isotopes induced by μ

Bkg spectrum knowledge is critical for oscillation analysis, but difficult...

Strategy:

- Reduce bkg with overburden + detector design
- Similar S/B in Near and Far det.
- Direct measurements

Reactor θ_{13} projects «yesterday»

Reactor θ_{13} projects «today»

IFAE2007, Napoli 11-13/04/07

Far and near lab

- → Start of integration 2006
- → Ready for detector installation

The detector(s)

TBL

Background studies

Detector	Site		Background					
			Accid	ental	Correlated			
			Materials	PMTs	Fast n	μ -Capture	^{9}Li	
CHOOZ		Rate (d^{-1})		10000000		10.0 Million	0.6 ± 0.4	
$(24 \ \nu/d)$		Rate (d^{-1})	0.42 ± 0.05		$1.01 \pm 0.04(stat) \pm 0.1(sys)$			
	Far	bkg/ν	1.6%		4%			
		Systematics	0.2%		0.4%			
Double Chooz		Rate (d^{-1})	0.5 ± 0.3	1.5 ± 0.8	0.2 ± 0.2	< 0.1	1.4 ± 0.5	
$(69 \ \nu/d)$	\mathbf{Far}	bkg/ν	0.7%	2.2%	0.2%	$<\!0.1\%$	1.4%	
		Systematics	$<\!0.1\%$	< 0.1%	0.2%	$<\!0.1\%$	0.7%	
Double Chooz		Rate (d^{-1})	5 ± 3	17 ± 9	1.3 ± 1.3	0.4	9 ± 5	
$(1012 \ \nu/d)$	Near	bkg/ν	0.5%	1.7%	0.13%	$<\!0.1\%$	1%	
		Systematics	< 0.1%	$<\!0.1\%$	0.2%	< 0.1%	0.2%	

Systematic uncertainties

		Chooz	Double-Chooz		
	ν flux and σ	1.9 %	<0.1 %		
Reactor- induced	Reactor power	0.7 %	<0.1 %	Two ''identical'' detectors,	
	Energy per fission	0.6 %	<0.1 %	LOW DKg	
Detector - induced	Solid angle	0.3 %	<0.1 %	Distance measured @ 10 cm + monitor core barycenter	
	Volume	0.3 %	0.2 %	Accurate weight measurement	
	Density	0.3 %	<0.1 %	Accurate T control (near/far)	
	H/C ratio & Gd concentration	1.2 %	<0.1 %	Same scintillator batch + Stability	
	Spatial effects	1.0 %	<0.1 %	Edge effects (Spill in/out) ~same in 2 de	
	Live time	?	0.25 %	Measured with independent methods	
Analysis	From 7 to 3 cuts	1.5 %	0.2 - 0.3 %	Less background => simpler selection	
	Total	2.7 %	< 0.6 %		

Double Chooz schedule

Double-Chooz 90% C.L. Limit versus year

Daya Bay

Reactor: 4 cores, 11.6 GWth 6 cores, 17.6 GWth in 2011

Identical detectors Multiple modules at each site Movable (swap to check syst.)

Daya Bay status and exp. sensitivity

- CAS officially approved the project
- Chinese Atomic Energy Agency and the Daya Bay nuclear power plant are very supportive to the project
- Funding agencies in China are supportive, R&D funding in China approved and available
- R&D funding from DOE approved
- Site survey including bore holes completed
- R&D started in collaborating institutions, the prototype is operational
- Proposals to governments under review
- Start civil engineering summer 2007
- Near+mid ("fast") Sept. 2009
- Near+far ("full) June 2010

Systematics related to complexity of site need to be kept under control cfr arXiv:0704.0498

Goal

0.007

Baseline

800.0

Systematic Uncertainty Assumptions:

90% CL Limit:

Goal with swapping

0.006

RENO

Reactor Experiment for Neutrino Oscillations

at YoungGwang,

- 1. Civil Construction & Underground Facility
- → Obtained support from local government & residents
- \rightarrow YK Power Plant Co. allowed to use their e state
- \rightarrow Bidding for survey & tunnel design comple ted (Feb 2007)
- \rightarrow Civil engineering work is expected to start in this summer

2. Detector Design

- $\rightarrow\,$ Full detector detector design completed with extensive MC
- \rightarrow TDR under preparation (to be ready in A pril 2007)
- 3. Prototype completed Mockup Detector in construction
- 4. Gd+Liquid Scintillator R&D

Under performance study of various samples

M.Goodman, NoVe07

ANGRA

Angra dos Reis, Brazil

2nd generation experiment aiming at

- very high statistics (improve use of full spectral info)
- reducing systematic errors to an absolute minimum

ANGRA

- Workshop on the ANGRA detector design (CBPF - May 16-19, 2006, Rio de Janeiro -BR)
- Now establishing a formal agreement with Eletronuclear for permanent access to the site.
- Already authorized to place a 20' container next to the reactor.
 - Muon background measurements (MINOS type counters)
 - Liquid scintillator detector prototype
 - Internet connection with CBPF and UNICAMP for remote monitoring
- Detailed project submitted in December 2006 to the Minister of Science and Technology. Total amount requested: \$400,000 USD

M.Goodman, NoVe07

Very Near Detector

«A construção do novo detector, que será financiada pelo governo federal via Finep (Financiadora de Estudos e Projetos), vai custar R\$ 1 milhão » (28/03/07)

Luminsity scaling of sensitivity limit

Detailed quantitative discussion of reach, with unified treatment of systematics: G.Mention, T.Lasserre, D.Motta arXiv:0704.0498v1

Mass hierarchy? Learned, Dye, Mass hierarchy from Fourier transform Pakvasa, Svoboda hep-ex/0612022 x 1010 Main peak Δm_{13}^2 if θ_{13} is nonzero Oscillation with 10000 $sin^{2}(2\theta_{13})=0.1$ Secondary peak («shoulder») Δm_{23}^2 : Arb Units left ↔ normal hierarchy right ↔ inverted hierarchy 2000 19 10 22.5 L/E in km/MeV 0.002 0.003 0.004 0.005 0.005 0.007 0.008 0.009 0 0.001 δm²/eV2

→ Hanohano (Hawaii)

- 10 kt, underwater, ~60 km from reactor
- Also mesure sin² θ_{12} to few%, sin²2 θ_{13} to ~0.05 and Δm^2_{13} to <1% (with 10 kt*y)

Summary and outlook

Potential for oscillation measurement at reactors is vast:

- Δm_{12}^2 @KamLAND will be improved by reducing systematics
- A new idea for mass hierarchy determination has appeared
- The hottest topic: θ_{13} "quick & clean" measurement Four multi-detector experiments currently proposed:

1st generation: **Double Chooz**, **RENO**

 $\rightarrow sin^2 2\theta_{13} < 0.02 - 0.02$ in 2011-2012

2nd generation: Daya Bay, Angra

 $\rightarrow sin^2 2\theta_{13} < 0.01$ after 2013

Double Chooz is a pacemaker in development of detector items that will allow control of systematics to desired level.

Its construction is starting soon... we're looking forward to its results !

Double Chooz and Superbeams

Complementarity of the two approaches

- Superbeam experiments limited by correlations and degeneracies.
- Reactor experiments can
 - Break correlations and degeneracies.
 - Replace an antineutrino running.
 - Help to optimize future accelerator experiments by constraining θ_{13} .
 - Do all this at relatively low costs.

P. Huber, M. Lindner, M. Rolinec, T. Schwetz, W. Winter, Nucl. Phys. Proc. Suppl. 145:190-193, 2005, hep-ph/0412133

Reactor v Comparison experiment parameters

	Power GW _{th}	<power> GW_{th}</power>	Location	Detectors km/ton/MWE
Angra	6.0	5.3	Brazil	0.05/1/20 0.3/50/250 1.5/500/2000
RENO	17.3	16.4	Korea	0.15/20/230 1.5/20/675
Daya Bay	11.6 (17.4 after 2010)	9.9 (14.8 after 2010)	China	0.36/40/260 0.50/40/260 1.75/[40×2]/910
Double Chooz	8.7	7.4	France	0.15/10.2/60 1.067/10.2/300

Reactor v Comparison Physics

Reactor	Optimistic start date Oct 2005	GW-t-yr (yr)	$\begin{array}{c} 90\% \text{ CL} \\ \text{Sin}^2 2\theta_{13} \\ \text{sensitivity} \end{array}$	for ∆m² (10 ⁻³ eV²)	efficiencies	Far event rate
ANGRA	2013(full)	3900(1) 9000(3) 15000(5)	0.0070 0.0060 0.0055	2.5	0.8×0.9	350,000/yr
RENO	Late 09	340(1)	0.03	2.0	0.8	18,000/yr
Daya Bay	08(fast) 09(full)	3700(3)	0.008	2.5	0.75×0.83	70,000/yr 110,000/yr (before/after 2010)
Double Chooz	Oct 07(far) Oct 08(near)	29(1) 29(1+1) 80(1+3)	0.08 0.04 0.025	2.5	0.8 ×0.9	15,000/yr

Double Chooz can do more than just v oscillations:

Neutrinos as a tool to monitor reactors
Non proliferation: vs as a new safeguard tool
Measurement of reactor power

Geo-neutrinos

Neutrinos as "probes of the Earth's interior"

Recent evidence: "Experimental investigation of geologically produced antineutrinos with KamLAND" Nature 436, 499-503 (28 July 2005)

