Novel Technicolor Theories:

Dark Matter and Unification

Francesco Sannino

Napoli, February 2007

Technicolor

New Strong Interactions at ~ 250 GeV [Weinberg, Susskind]

Natural to use QCD-like dynamics.

 $SU(N)_{TC} \times SU(3)_C \times SU_L(2) \times U_Y(1)$

$$\langle Q^f \widetilde{Q}_{f'} \rangle = \Lambda_{TC}^3 \qquad \Lambda_{TC} \simeq 250 \ GeV$$

Problems with the Old Models

• At odds with Precision Measurements

• Large Flavor Changing Neutral Currents (FCNC)

• Limited knowledge of strong dynamics!

Electroweak Precision Measurements

Kennedy,Lynn, Peskin-Takeuchi, Altarelli-Barbieri, Bertolini- Sirlin, Marciano-Rosner,..:

$$\Pi_{XY}^{\mu\nu}(q^2) = \Pi_{XY}(q^2)g^{\mu\nu} + \cdots$$

S - T

S-measures the left - right type current correlator

$$S = -16\pi \frac{\Pi_{3Y}(m_Z^2) - \Pi_{3Y}(0)}{m_Z^2}$$

T-measures deviations from

$$M_W^2 = \sin^2 \theta_w M_Z^2$$

$$T = 4\pi \frac{\Pi_{11}(0) - \Pi_{33}(0)}{s_W^2 c_W^2 m_Z^2}$$

Present Data

hep-ex/0509008

Large & Positive S from QCD-like TC

Peskin and Takeuchi, '90

Fermion masses versus FCNC

 Λ_{ETC} should be sufficiently larger than $\Lambda_{TC} \approx 250 GeV$ to reduce FCNC.

Near Conformal Properties

Why the walking can help?

$$\left\langle \bar{Q}Q_{ETC} \right\rangle = \exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} d\ln(\mu) \ \gamma_m(\alpha(\mu))\right) \left\langle \bar{Q}Q_{TC} \right\rangle$$

QCD-Like

$$\exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} d\ln(\mu) \ \gamma_m(\alpha(\mu))\right) \sim (\ln(\Lambda_{ETC}/\Lambda_{TC}))^{\gamma_m}$$

Near the conformal window

$$\exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} d\ln(\mu) \ \gamma_m(\alpha(\mu))\right) \sim \left(\left(\Lambda_{ETC}/\Lambda_{TC}\right)^{\gamma_m(\alpha^{\star})}\right)$$

S in (Walking) Technicolor

Perturbative Estimate

$$S_{\text{pert}} = \frac{1}{6\pi} \frac{N_f}{2} d(R)$$

Non Walking:

$$S_{TC} > S_{\text{pert}}$$

Walking:

$$S_{WTC} \leq S_{\text{pert}}$$

Sundrum - Hsu 96 Appelquist - F.S. 98

EW Viable Walking Technicolor Models

Minimal Walking Technicolor (MWT)

Higher Dimensional Representations

Beyond Minimal Walking Technicolor

Partially EW Gauged Technicolor

Split Technicolor

Additional Fermions in SM

F.S. & Tuominen 04 Dietrich, F.S., Tuominen 06

Dietrich, F.S. Tuominen 05 Dietrich, F.S. 06

Gudnason, Ryttov, F.S. 06

Progress in Strong Interactions

Phase Diagram of Higher Dimensional Representations.

New Limits for Strongly Interacting Theories

Link between the Confinement and Chiral Symmetry -Phase transitions (Mocsy, F.S., Tuominen)

The Model: The Symmetric-Theory

Here Q and \widetilde{Q} are Weyl fermions.

The A-type is obtained by substituting \Box with \dashv .

Phase Diagram for the Symmetric-Theory

Phase diagram as function of N_f and N. [Sannino-Tuominen]

For N=2,3,4,5 we have that $N_f=2$

Is it the minimal walking theory?

Universal Phase Diagram for HDRs

Phase diagram for theories with fermions in the Fundamental (Black-gray), 2A (Blue-light blue), 2S (Red-pink), Adjoint (Green - light green). For N=4, 6 and 8 also the 3-index antisymmetric has a nontrivial phase diagram.

3 Large N Limits

Ryttov and F.S. th/0509130

Minimal Walking Technicolor

Near conformal for, $N_{\rm f}\sim 2$

Small FCNC + Top mass

OK with precision data.

Light Composite Higgs

Dark Matter

Unification

Nf=2 & N=2: Minimal-Walking/Working-Theory

$$Q_L^a = \begin{pmatrix} U^a \\ D^a \end{pmatrix}_L, \quad U_R^a, \quad D_R^a \qquad a = 1, 2, 3$$

$$Y(Q_L) = \frac{y}{2} \qquad Y(U_R, D_R) = \left(\frac{y+1}{2}, \frac{y-1}{2}\right)$$

$$\mathcal{L}_L = \begin{pmatrix} N \\ E \end{pmatrix}_L \qquad N_R \qquad E_R$$

$$Y(\mathcal{L}_L) = -3\frac{y}{2} \qquad Y(N_R, E_R) = \left(\frac{-3y+1}{2}, \frac{-3y-1}{2}\right)$$

 $\mathcal{N} = 4$ super Yang-Mills

S-parameter

$$S = \left(\frac{1}{6\pi} - \delta\right) \frac{N(N+1)}{2} \cdot \frac{N_f}{2}$$

• $\delta \sim 0.013$ due to near conformal dynamics [Sundrum-Hsu, Appelquist-Sannino].

$$S(N=2, N_f=2) \simeq 0.1$$

• The estimate for **S** in the S-type model is:

Model versus EWPData

Electron (m2) and Neutrino (m1) Dirac masses.

Standard Hypercharge Assignment

Exotic Hypercharge Assignment

Non Standard Hypercharge Assignment.

The new Electron now is doubly electrically charged, while the would be neutrino is singly charged.

Spectrum and Effective Theory

$$Q = \begin{pmatrix} U_L \\ D_L \\ -i\sigma^2 U_R^* \\ -i\sigma^2 D_R^* \end{pmatrix},$$

$$\langle Q_i^{\alpha} Q_j^{\beta} \epsilon_{\alpha\beta} E^{ij} \rangle = -2 \langle \overline{U}_R U_L + \overline{D}_R D_L \rangle ,$$

Gudnason, Kouvaris & F.S. 06

$$E = \left(\begin{array}{cc} 0 & \mathbb{1} \\ \mathbb{1} & 0 \end{array}\right)$$

Goldstone-Spectrum

Techni-Mesons

$$\overline{D}_R U_L$$
, $\overline{U}_R D_L$, $\frac{1}{\sqrt{2}} (\overline{U}_R U_L - \overline{D}_R D_L)$

Techni-Baryons

Electric Charge

 $U_L U_L$, $D_L D_L$, $U_L D_L$, y+1, y-1, y,

The Low Energy Effective Theory

$$U = \exp\left(i\frac{\Pi^a X^a}{F}\right)E \;,$$

$$L = \frac{F^2}{2} \operatorname{Tr} \left[D_{\mu} U D^{\mu} U^{\dagger} \right] - \frac{1}{2} \Pi_a (M_{\text{ETC}}^2)^{ab} \Pi_b$$

$$D_{\mu}U = \partial_{\mu}U - ig\left[G_{\mu}U + UG_{\mu}^{T}\right]$$

$$G_{\mu} = \begin{pmatrix} W_{\mu} & 0\\ 0 & -\frac{g'}{g} B_{\mu}^T \end{pmatrix} + \frac{y}{2} \frac{g'}{g} B_{\mu} \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$

Spectrum of Heavy States via QCD

Using 't Hooft Large N and Unitarity in Pion-Pion Scattering in QCD

Vector Meson is a quark-antiquark state:

$$\rho(770)$$

Broad Sigma of multiquark nature

 $f_0(600)$

F.S. & Schechter, 95 Harada, F.S. and Schechter, 03 F.S. and Schechter, 07

Higgsless: QCD-like TC Spectrum via QCD

$$M_{T\rho} = \frac{\sqrt{2}v_0}{F_{\pi}} \frac{\sqrt{3}}{\sqrt{N_D N_{TC}}} m_{\rho} \qquad v_0 \sim 250 \text{GeV}$$

$$M_{Tf_0} = \frac{\sqrt{2}v_0}{F_{\pi}\sqrt{N_D}} \left(\frac{N_{TC}}{\sqrt{3}}\right)^{\frac{p-1}{2}} m_{f_0} \qquad p > 0$$

Light Higgs in Two Index Theories

$$M_{T\rho} = \frac{\sqrt{2}v_0}{F_{\pi}} \frac{\sqrt{3}\sqrt{2}}{\sqrt{N_D N_{TC}(N_{TC} \mp 1)}} m_{\rho}$$

$$M_{Tf_0} = \frac{\sqrt{2}v_0}{F_{\pi}} \frac{\sqrt{3}\sqrt{2}}{\sqrt{N_D N_{TC}(N_{TC} \mp 1)}} m_{f_0}$$
F.S. 07

One Light Composite Higgs Signature:

Large Production at Tevatron and CERN

 $M_H = 115 \text{ GeV}$ (solid line), 150 GeV (dashed line) and 200 GeV (dotted line)

Technibaryon as DM

Nussinov, Barr, Chivukula and Farhi Gudnason, Kouvaris, F.S.

$$\frac{\Omega_{TB}}{\Omega_B} = \frac{TB}{B} \, \frac{m_{TB}}{m_p} \; ,$$

 m_{TB} is the mass of the LTB

For TeV scale Technibarions the previous ratio is of Order 1!

Universe Electric Neutrality

Chemical Equilibrium

Sphaleron Processes

Dark Matter in MWT

- a) Technibaryon, DD is neutral for y=1 Gudnason, Kouvaris, F.S. ph/0608055
- b) Neutrino for y=1/3.

Kainulainen, Tuominen, Virkajärvi. ph/0612247

c) Dark Majorana

Kouvaris ph/0703266

1st Order

$$-\frac{TB}{B} = \sigma_{DD} \frac{22 + \sigma_{\nu'}}{9(22 + 2\sigma_{DD} + \sigma_{\nu'})} \left[3 + \frac{L}{B} + \frac{1}{\sigma_{\nu'}} \frac{L'}{B}\right]$$

$$\sigma_i = \begin{cases} 6\mathscr{F}\left(\frac{m_i}{T^*}\right) & \text{for fermions }, \\ 6\mathscr{G}\left(\frac{m_i}{T^*}\right) & \text{for bosons }, \end{cases}$$

$$\mathscr{F}(z) = \frac{1}{4\pi^2} \int_0^\infty dx \, x^2 \cosh^{-2}\left(\frac{1}{2}\sqrt{x^2 + z^2}\right)$$
$$\mathscr{G}(z) = \frac{1}{4\pi^2} \int_0^\infty dx \, x^2 \sinh^{-2}\left(\frac{1}{2}\sqrt{x^2 + z^2}\right)$$

2nd Order

$$-\frac{TB}{B} = \frac{\sigma_{DD}}{3(18 + \sigma_{\nu'})} \left[(17 + \sigma_{\nu'}) + \frac{(21 + \sigma_{\nu'})}{3} \frac{L}{B} + \frac{2}{3} \frac{(9 + 5\sigma_{\nu'})}{\sigma_{\nu'}} \frac{L'}{B} \right]$$

Technibaryon as DM

Technibaryon, DD

Gudnason, Kouvaris and F.S. ph/0608055

Unification

Technicolor assisted Unification

Gudnason, Ryttov, F.S. ph/0612230

1 - loop running for SU(n)

$$\alpha_n^{-1}(\mu) = \alpha_n^{-1}(M_Z) - \frac{b_n}{2\pi} \ln\left(\frac{\mu}{M_Z}\right)$$

Degree of SU(3)xSU(2)xU(1) Unification

$$B_{Th} \leftarrow \frac{b_3 - b_2}{b_2 - b_1} = \frac{\alpha_3^{-1} - \alpha^{-1} \sin^2 \theta_w}{(1 + c^2)\alpha^{-1} \sin^2 \theta_w - c^2 \alpha^{-1}} \to B_{Exp}$$

Unification Scale

$$M_{GUT} = M_Z \exp\left[2\pi \frac{\alpha_2^{-1}(M_Z) - \alpha_1^{-1}(M_Z)}{b_2 - b_1}\right]$$

Standard Model

$$B_{\rm Th} \sim 0.53$$
 $B_{\rm Exp} \sim 0.72$

Minimal Walking Technicolor

$$b_{3} = \frac{4}{3}N_{g} - 11$$

$$b_{2} = \frac{4}{3}N_{g} - \frac{22}{3} + \frac{2}{3}\frac{1}{2}\left(\frac{2(2+1)}{2} + 1\right) = \frac{4}{3}\left(N_{g} + 1\right) - \frac{22}{3}$$

$$b_{1} = \frac{3}{5}\left(\frac{20}{9}N_{g} + \frac{20}{9}\right) = \frac{4}{3}\left(N_{g} + 1\right)$$

$$B_{\mathrm{Th}} \sim 0.68 \qquad B_{\mathrm{Exp}} \sim 0$$

Improving on Unification

Adding New Fermions in the SM

Gudnason, Ryttov, F.S. ph/0612230

Minimal Walking Technicolor + SM Adjoint Matter

Colored Octet of Majorana Particles

Weak Triplet of Majorana Fermions

Extra SM Weyl Singlet

$$b_3 = \frac{4}{3}N_g - 11 + 2$$

$$b_2 = \frac{4}{3}(N_g + 1) - \frac{22}{3} + \frac{4}{3}$$

$$b_1 = \frac{4}{3}(N_g + 1)$$

 $B_{\rm Th} = 13/18 = 0.72(2)$ versus $B_{\rm Exp} \simeq 0.72$

Unifying also TC Cartoon!

Summary

- Introduced different types of viable technicolor theories
- Phase diagram of Higher Dimensional Representations
- Presented Minimal Walking Technicolor
- Minimal Walking Technicolor + Adjoint Matter
- Dark Matter as a technibaryon
- Unification