Status of Neutrino Oscillations

Antonio Marrone Univ. of Bari & INFN - Bari

based on work done in collaboration with: G.L. Fogli, E. Lisi, A. Palazzo, A. Melchiorri, P. Serra, J. Silk, A. Slosar

IFAE 2007 11-13 Aprile 2007 - Napoli

Outline

LMA Oscillations

Solar neutrinos -> LMA solution KamLAND -> LMA confirmed by $\bar{\nu}_e$ disappearance and spectral distortion

> "Atmospheric" oscillations (SK + K2K + MINOS)

MiniBooNE

Cosmology + Astrophysics limits Direct ν mass measurements

Mass Spectrum

 δ CP viol. phase

 (ϕ_2, ϕ_3) Majorana phases

Solar parameters $(\delta m^2, \theta_{12}, \theta_{13})$

Solar neutrino data

Mikheyev-Smirnov-Wolfenstein effect confirmed

3ν Analysis: Solar + KamLAND

SNO phase III (completed)

Better NC determination through 40 strings of proportional counters

Reduction of systematic uncertainties

Lower analysis energy threshold

Better solar neutrino flux determination by breaking CC-NC correlation

Correlations	D ₂ O unconstrained	D ₂ O constrained	Salt unconstrained	NCD
NC,CC	-0.950	-0.520	-0.521	~0
CC,ES	-0.208	-0.162	-0.156	~-0.2
ES,NC	-0.297	-0.105	-0.064	~0

Borexino

Real-time measurement of the solar⁷Be neutrino flux

Day-night, seasonal, periodic variations

Detector filling complete in May 2007

KamLAND

KamLAND II starting this year

Borexino (Oct. 2006)

Atmospheric parameters

 $(\Delta m^2, \theta_{23}, \theta_{13})$

3ν Analysis of SK + K2K + CHOOZ

The more stringent limit on θ_{13} comes from the negative results of the CHOOZ experiment

The analysis includes subleading LMA effects and marginalization with respect to the four cases $[\cos \delta = \pm 1] \otimes [\operatorname{sign}(\pm \Delta m^2)]$

A slightly non zero value of θ_{13} is preferred, although without statistical significance

Impact of MINOS

The path behind ...

Discovery of neutrino masses

Leading structure of the mixing matrix

```
Vacuum oscillations (Atm) + Adiabatic MSW (Sol)
```

Three active neutrino oscillation scenario satisfactory

the way still to go ...

Majorana vs Dirac nature of neutrinos

Mass spectrum: degenerate/ non-degenerate & hierarchy

 θ_{23} exactly maximal (if not, which octant)

 $heta_{13}$ is zero or not

 δ_{CP} , Majorana phases

Non-oscillation observables

Beta decay

No signal so far $m_{\beta} < 1.8 \text{ eV}$ (Mainz+Troitsk)

 $0\nu 2\beta$

No signal, excepted the debated claim by part of the (Heidelberg-Moscow coll.)

claim accepted claim rejected $\log_{10}(m_{\beta\beta}/\text{eV}) = -0.23 \pm 0.14$ $\log_{10}(m_{\beta\beta}/\text{eV}) = -0.23_{\infty}^{+0.14}$

Cosmology

Upper bound of the order of 0.1-1 eV depending on the adopted inputs and priors

$$m_{\beta} = \sqrt{c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2}$$

effective neutrino mass, as far as the single mass eigenstates are not experimentally resolvable

$$m_{\beta\beta} = |c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3}|$$

only V-A charged weak current with the exchange of Majorana neutrinos

$$\Sigma = m_1 + m_2 + m_3$$

very weak sensitivity to the details of the spectrum

Superposition of all the constraints

Case	Cosmological data set	Σ bound (2 σ)
1	WMAP	< 2.3 eV
2	WMAP + SDSS	< 1.2 eV
3	$WMAP + SDSS + SN_{Riess} + HST + BBN$	$< 0.78 \ \mathrm{eV}$
4	$\rm CMB + LSS + SN_{Astier}$	$< 0.75 \ \mathrm{eV}$
5	$CMB + LSS + SN_{Astier} + BAO$	$< 0.58 \ \mathrm{eV}$
6	$CMB + LSS + SN_{Astier} + Ly-\alpha$	$< 0.21 \ \mathrm{eV}$
7	$CMB + LSS + SN_{Astier} + BAO + Ly-\alpha$	$< 0.17 \ \mathrm{eV}$

KATRIN

Limits down by an order of magnitude $m_\beta \lesssim 0.2 \; (eV)$

Next generation $0\nu 2\beta$ experiments

$$m_{\beta\beta} \lesssim 0.01 \div 0.1 \text{ (eV)}$$

Name		%	Q _{ββ}	%	В	T (year)	Tech	<m></m>
				E	c/y			
CUORE	¹³⁰ Te	34	2533	90	3.5	1.8x10 ²⁷	Bolometric	9-57
GERDA	⁷⁶ Ge	7.8	2039	90	3.85	2x10 ²⁷	Ionization	29-94
Majorana	⁷⁶ Ge	7.8	2039	90	.6	4x10 ²⁷	Ionization	21-67
GENIUS	⁷⁶ Ge	7.8	2039	90	.4	1x10 ²⁸	Ionization	13-42
Supernemo	⁸² Se	8.7	2995	90	1	21026	Tracking	54-167
EXO	¹³⁶ Xe	8.9	2476	65	.55	1.3x10 ²⁸	Tracking	12-31
Moon-3	¹⁰⁰ Mo	9.6	3034	85	3.8	1.7x10 ²⁷	Tracking	13-48
DCBA-2	¹⁵⁰ Nd	5.6	3367	80		1x10 ²⁶	Tracking	16-22
Candles	⁴⁸ Ca	.19	4271	-	.35	3x10 ²⁷	Scintillation	29-54
CARVEL	⁴⁸ Ca	.19	4271	-		3x10 ²⁷	Scintillation	50-94
GSO	¹⁶⁰ Gd	22	1730	-	200	1x10 ²⁶	Scintillation	65-?
COBRA	<u>115Cd</u>	7.5	2805				Ionization	
SNOLAB+	¹⁵⁰ Nd	5.6	3367				Scintillation	

4 Neutrino Mixing

Also

CPT disfavored at more than four sigmas

Could work

4 neutrinos + "something"

- 3 + 2 light sterile neutrinos
- 3 + 1 light sterile + CPT viol.
- 3 + 1 light sterile + decay

3 + 1 light sterile with extra dimensions

3 + quantum decoherence and CPT violation Conclusions

Robust evidence in favour of oscillations in a three neutrino flavor scenario: vacuum oscill, + adiabatic MSW conversion

to survive ... the MiniBooNE results!!

Improvement on the oscillation parameters

MINOS, OPERA, SNO, KamLAND, Borexino and on absolute masses KATRIN, GERDA, CUORE, SuperNemo, ...

Near future (T2K, Double CHOOZ, Daya Bay, ...)

Severely constrain θ_{13} or discover non-zero value

few % precision on the relevant parameters + CP, hierarchy, ..