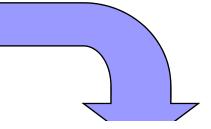
Vertex detector @ ILC

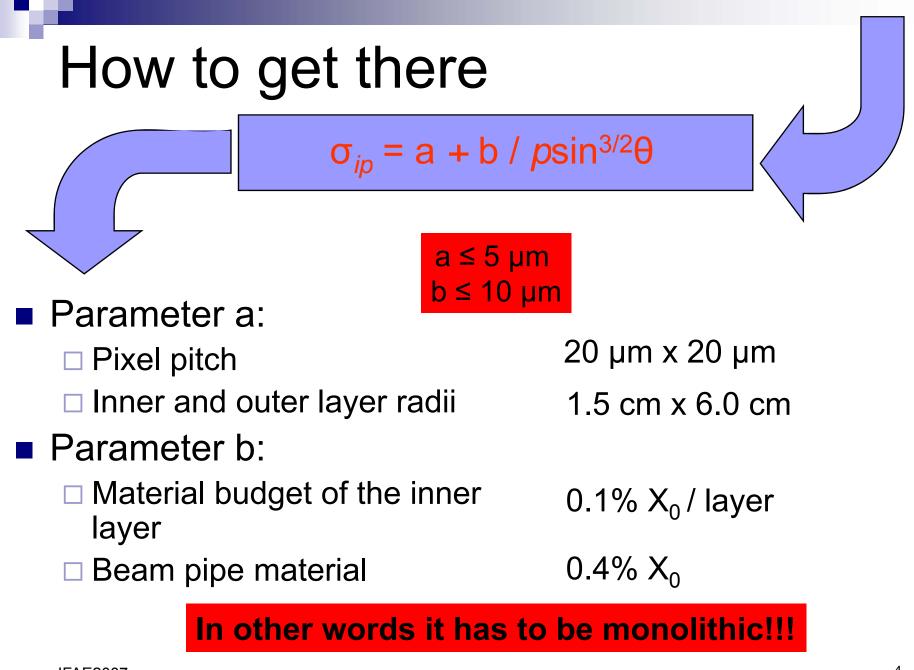
Monolithic technologies for pixel detectors

Antonio Bulgheroni, INFN – Roma3

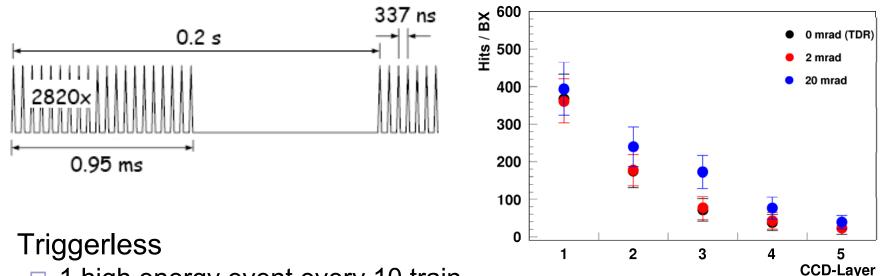
Content

- Physics requirements for the ILC vertex detector
 Technologies and architectures
 - DEPFET


 - 🗆 SOI / 3D
- Conclusion


Main goal of the ILC vertex

- Determination of the branching ratios of the Higgs boson to fermions and bosons
 Particularly critical is the measurement of the coupling to charm in a very large b background
 - □ Precise measurement of the Γ_{bb}/Γ_{cc} is discriminating among SM or SUSY Higgs

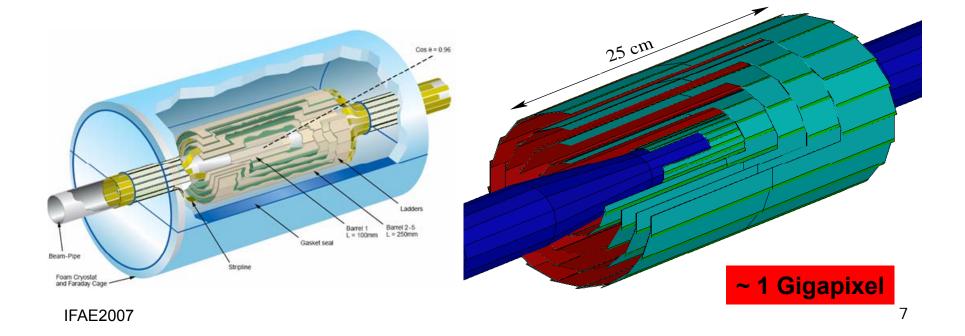


IFAE2007


Machine related constraints / 1

- □ 1 high energy event every 10 train
- This is also physics driven, since nothing has to be wasted
- One train every 200 ms
- 3000 bunch per train lasting 1 ms
 - Reasonably short inter-bunch and long inter-train time
- Machine background
 - Deeply investigated

Machine related constraints / 2


- Radiation hardness
 10⁹ n/cm²/year
 - □ 5 * 10¹² e⁻/cm²/year
- EMI compliant

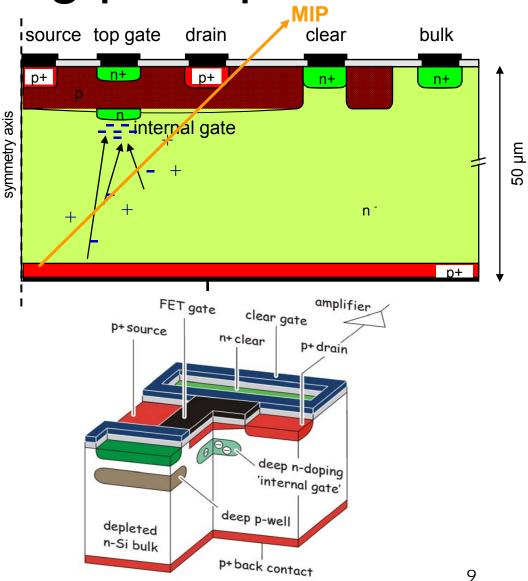
 According to previous experience, EMI can disallow the readout in the inter-bunch time
 If the Faraday cage is not enough, an In Situ Storage architecture might be required.

General vertex design

Considering all these constrains we end up with a vertex detector that is design independent but technology dependent!

Technology and architecture R&D

There are several teams working on different (monolithic) detector technologies trying to implement architectures suitable for the ILC environment

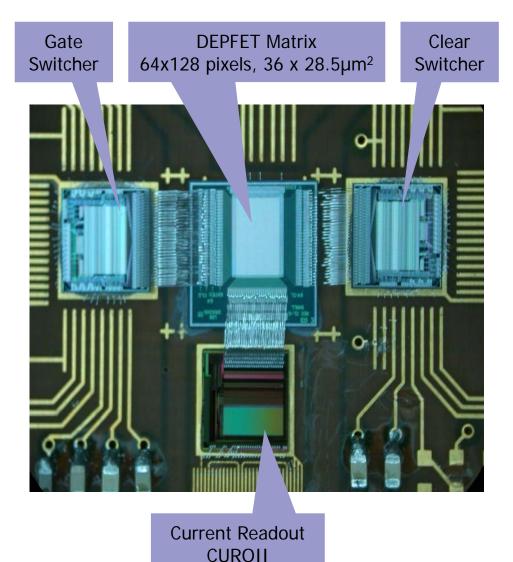

Arch/Tech	Parallel Column	In situ storage	Sparse data scan
CCD	LCFI (UK)	★ LCFI-ISIS	-
CMOS	★ IRES (Strasbourg)	RAL-FAPS	★ Not impossible
DEPFET	★ MPI-Bonn et al	-	-
3D / SOI	MIT / INFN & Hamamatsu	Possible	Possible

Credits slide at the end...

DEPFET working principle

~1µm

- A **p-FET** transistor is integrated in every pixel
- A potential minimum for electrons is created under the channel by sideward depletion
- Electrons are collected in the "internal gate" and modulate the transistor current
- Signal charge is removed via a clear contact
- Fast signal collection in fully depleted bulk
- Low noise due to small capacitance and first amplification
- Transistor can be switched **off** by external gate – charge collection is then still active !
- Readout can be at the source ('voltage signal') or at the drain ('current signal') – ILC uses drain readout

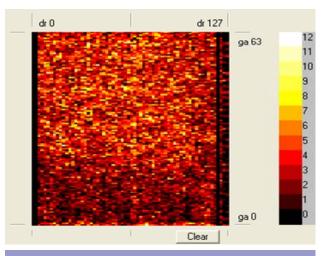

DEPFET proto

Not really monolithic!

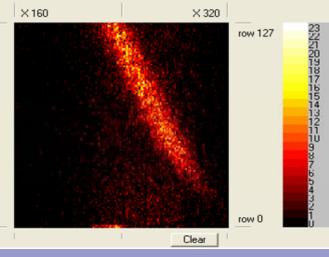
- □ Gate and clear switcher need for pixel addressing and reset.
- Two wire bondings for each row and one for each column are required
- Resetting (clear) may require
 "high" voltage

CUrrent Read Out chip

- □ With real time zero suppression
- Each pixel charge is read locally and not shifted


DEPFET test beam @ DESY

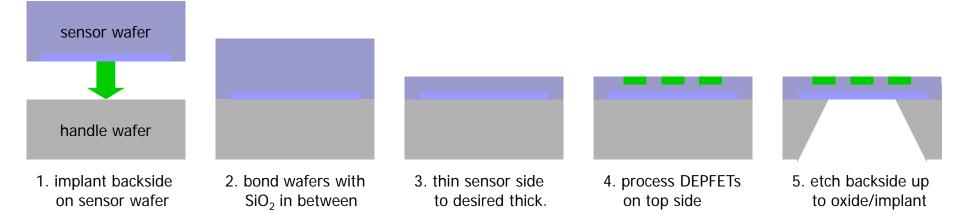
- 4GeV e- beam (multiple scattering ☺)
- Reference Si strip telescope
- Tested matrices with 64 x 128



RESULT SUMMARY

- Resolution x = 4.2µ, y = 1.5µ
- Efficiency = 99.75% with a 5σ seed cut
 - = 99.96% with a modest χ^2 selection cut
- Using this number in a Geant4 simulation for the vertex you get:

Beam spot on (small) DEPFET



correlation telescope x ⇔ DEPFET x

IFAE2007

 $\sigma_{ip} = 2.4 \mu m + 7.2 \mu m / p sin^{3/2} \theta$

DEPFET thinned sensor

first 'dummy' samples: 50µm silicon with 350µm frame

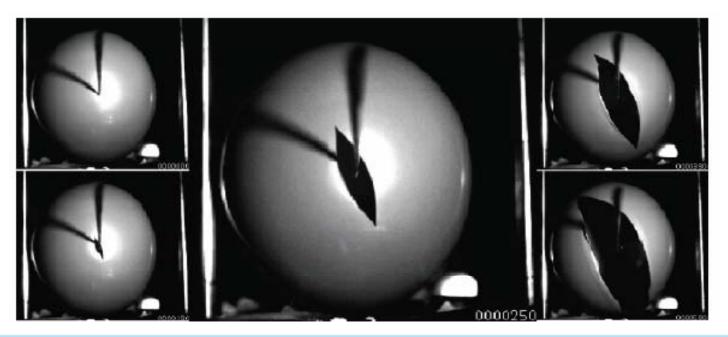
thinned diode structures: leakage current: <1nA /cm²

IFAE2007

DEPFET conclusion & outlooks

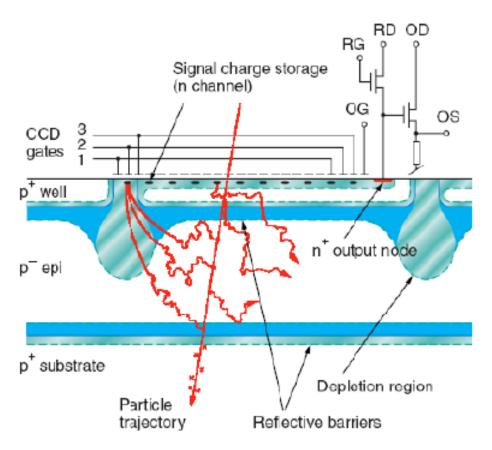
- Most mature technology and very well advanced
- Verify the performance after thinning down to the target thickness
- Simplifying the hybridization scheme

CCD for the ILC


CCD sensor was used in the SLD experiments were an impact parameter resolution similar to the ILC required one was obtained.

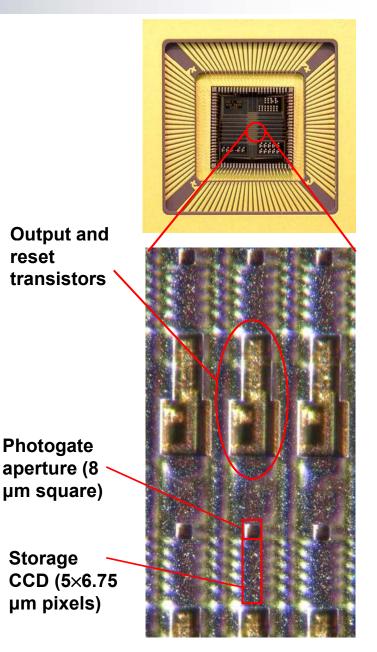
$$\sigma_{ip} = 8\mu m + 33\mu m/p sin^{3/2} \theta$$

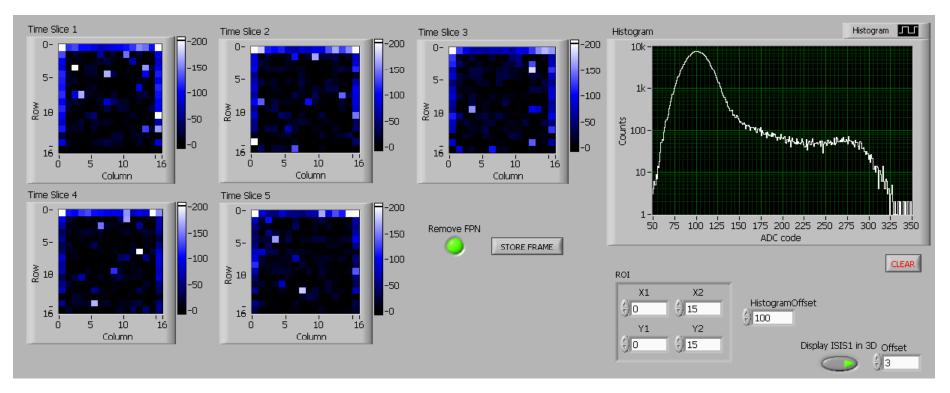
- There are two main groups working on CCD
 LCFI (UK) on parallel column and ISIS
 GLD (Japan) on fine pitch CCD (5µm x 5µm)
- Even if the CP-CCD is still the most active topic, I will give you some hints about the ISIS


In-situ Storage Imager Sensor

- Signal production and collection in solid state detector is a very process
- The long lasting procedure is the signal readout
- So, store the signals in the sensor and transfer of all them afterward

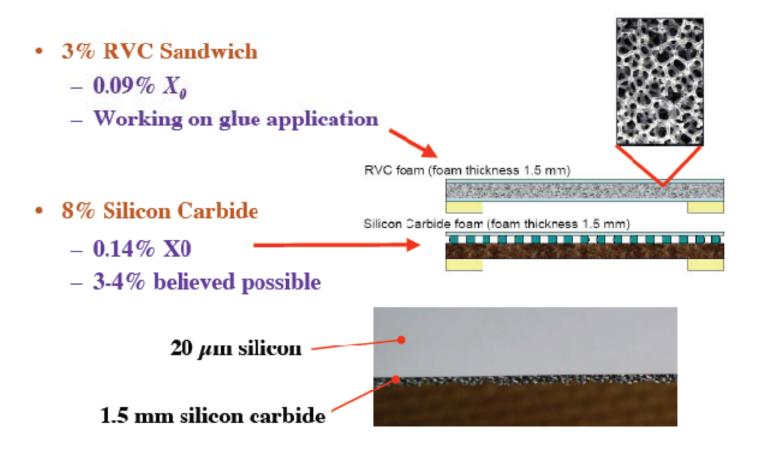
• 2003: Dart bursting a balloon: 100 consecutive frames at 1M frame/sec


ISIS: In situ storage CCD


- Beam-related RF pickup is a concern for all sensors converting charge into voltage during the bunch train
- Charge collection to photo gate from ~20µm as in conventional CCD
- Signal charge shifted into the storage register during the bunch
- Readout of the storage register in the inter train time

ISIS Proto: ISIS1

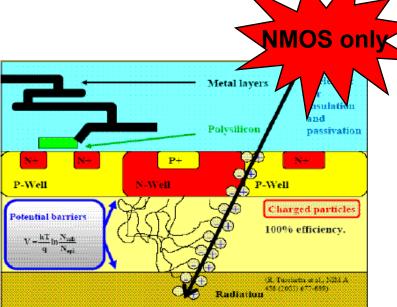
- "Proof of principle" device (ISIS1) designed and manufactured by e2V Technologies
- 16 ×16 array of ISIS cells with 5pixel buried channel CCD storage register each
- Cell pitch 40 µm × 160 µm, no edge logic (pure CCD process)
- Chip size $\approx 6.5 \text{ mm} \times 6.5 \text{ mm}$

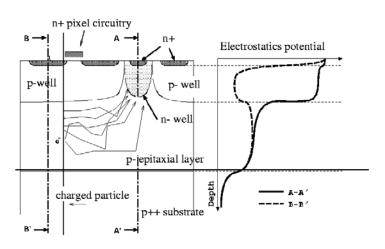


ISIS1 tests with ⁵⁵Fe

- The top row and 2 side columns are not protected and collect diffusing charge
- The bottom row is protected by the output circuitry
- Results are encouraging even if there some technological issues to be understood (ISIS1 controlling the transistor threshold).

CCD Mechanics




CCD conclusion and outlooks

- This is the traditionally favorite candidate because it did already very well in the past. Excellent previous experience
- Verify how reliable are the column // readout and the ISIS architectures

CMOS sensor for the ILC: MAPS

- p-type low-resistivity Si hosting ntype "charge collectors"
 - □ signal created in epi layer
 - □ Q = 80 e-h / µm → signal .~1000 e
 - excess carriers propagate (thermally) to diode with help of reflection on boundaries
 - □ charge sensing through n-well/p-epi junction
- Specific advantages of CMOS sensors:
 - Signal processing circuits integrated on sensor substrate (system-on-chip)
 - □ Sensitive volume (epitaxial layer) is 10–15 μ m thick → thinning to ~ 30 μ m permitted
 - □ Standard, massive production, fabrication technology → cheap, fast turn-over
 - Attractive balance between granularity, mat. budget, rad. tolerance, r.o. speed and power dissipation

IFAE2007

World Wide CMOS

CMOS designers:

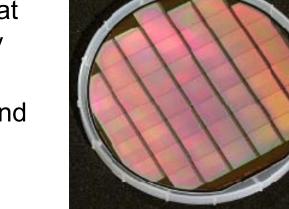
□ Europe: IRES, DAPNIA, RAL, Grenoble, INFN (Rm3, Pv, Pi)

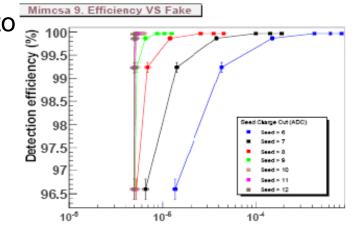
□ USA: LBNL, BNL, Oregon – Yale (Sarnof), Univ. Hawaii

CMOS characterization:

DESY, Univ. Hamburg, GSI, Univ. Frankfurt, Univ. Geneva, INFN (Mi, Fe)

Why?

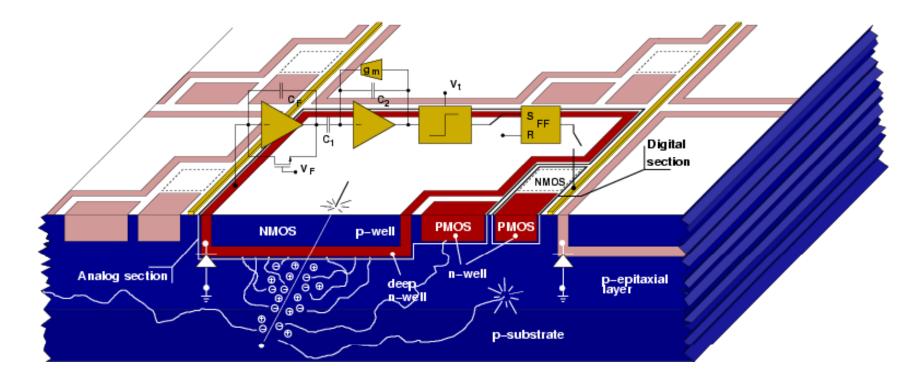

- Because CMOS sensors are relatively easy to do and they offer lots of interesting features that can be implemented (and tested!).
- There are several deep sub-micron technologies available on the market to be explored


"Standard" CMOS: the Mimosa family

- CMOS for particle detection was firstly used at Strasbourg with the Mimosa 1 chip. Currently designers are working on Mimosa 22
- Already tested many different technologies and architectures with well established performances

SUMMARY

- Best performing technology: AMS 0.35 opto
- **Noise:** 10 e⁻
- **SNR for a MIP**: 20 30 (MPV)
- **Detection efficiency:** 99.5%
- Operating temperature: up to 40°
- **Single point resolution:** down to 1.5 µm

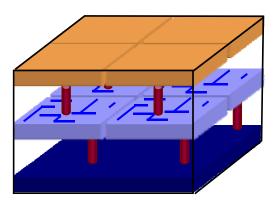

Fake rate per pixel

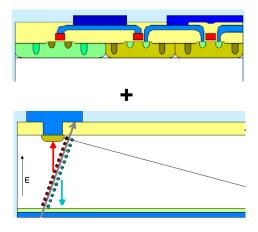
CMOS development for the ILC

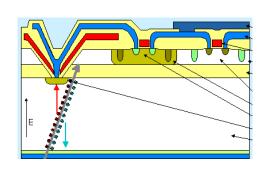
- Thinning and ladders
 - □ Several thinning attempts: easy down to 50 µm, going further trickier, but still possible.
 - Ladder prototype with 9 full area sensors mounted and tested in LBNL for STAR detector upgrade
- High readout speed
 - □ Parallel column readout
 - Zero suppression with simple pixel over threshold algorithm and binary output
 - □ 3 or 4 bit ADC integrated on the same chip
- Radiation hardness
 - □ Neutron irradiation up to 10¹²/cm² → 5% efficiency loss, modest increase of leakage current and 10% noise increase
 - Ionizing radiation: ok for X-ray with a specific design (500 krad) still to be investigated the effect of low energy electrons.

Exotic CMOS development

- CMOS MAPS with hybrid-pixel-like analogue readout electronics in a 130 nm triple well process (INFN – PV + PI)
- Overcoming the only n-MOS limitation

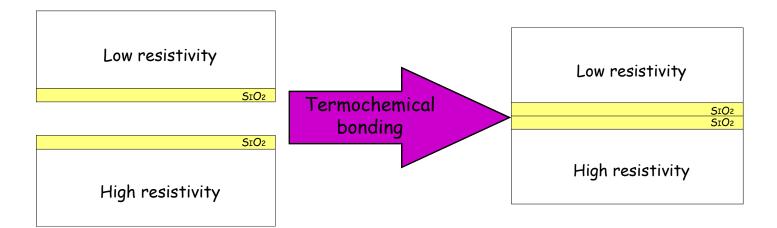


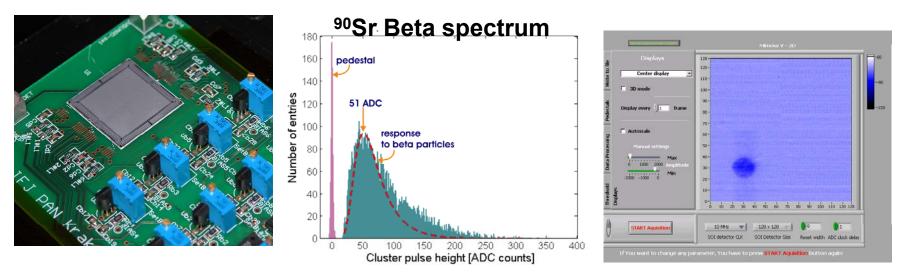

CMOS conclusions & outlooks


- CMOS is a very appealing alternative to CCD
- This is most active technology in the vertex community
- Compare among different approaches:
 - □ Parallel column readout with digital / binary output
 - Sparsification at chip level
 - □ In situ storage (FAPS)
- The upgrade of the STAR vertex detector with CMOS sensors will help a lot system integration

SOI & 3D: the runner-ups

- The idea:
 - standard readout electronics is silicon made
 - standard fully depleted sensors are silicon made
 - → Glue them together!
- Why stopping at two layers?
 - Tile up all the layers you need = 3D electronics!

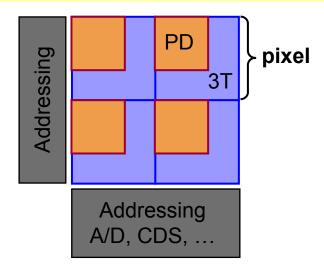



SOI: Silicon On Insulator

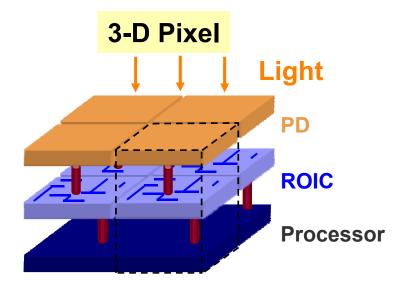
- In the SOI technology, two silicon wafers are bonded together with a SiO₂ in between
- The bottom layer is usually used only as a mechanical support, but in our application, it can be used a detection medium while in the upper one whatever electronics can implemented.

SUCIMA experience

- SUCIMA was a Fifth Framework program funded project aimed to develop a monolithic real time radiation dosimeter in medical applications.
- IET in Warsaw carried on the technological development to integrate on a SOI substrate both the collecting p-n junction and the standard CMOS process

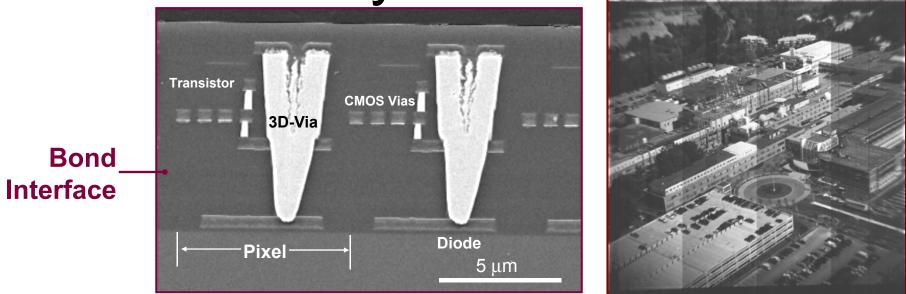

IFAE2007

SUCIMA results


- Pretty low yield mainly due to the bad quality of the target SOI wafers.
 - Having SOI wafer with high resistivity handle wafer is troublesome especially if you only need a few wafers batch
- Available technology at IET is too old and need to be updated in order to be compliant with the ILC requirements
- A new technological development has been started with some former SUCIMA partners, INFN and Hamamatsu.

Going 3D (MIT + Lincoln Lab)

Conventional Monolithic APS



- Pixel electronics and detectors share area
- Fill factor loss
- Co-optimized fabrication
- Control and support electronics placed outside of imaging area
 IFAE2007

- 100% fill factor detector
- Fabrication optimized by layer function
- Local image processing
 - Power and noise management
- Scalable to large-area focal planes

Sci-fi or reality?

 A 1MPixel CMOS sensor has been produced using a quasi standard 3T design with collecting diode on a different substrate interconnected through 3D vias

SOI/3D conclusions & outlooks

- Even if close to sci-fiction they are already true!
- Of course they are the last born technologies but we don't have to decide today which will be the vtx detector technology
- If they won't be mature enough for the ILC, they will be for the next

Conclusion

- The ILC vertex detector is characterized by a very demanding impact parameter resolution.
- This is requiring a step forward in the development of monolithic sensor technology.
- Several different approaches are now being studied and the competition is increasing.
- There will be one winner only, but no losers!

Credits

DEPFET

□ Si-LAB Bonn - N. Wermes, <u>http://siliconlab.physik.uni-bonn.de/</u>

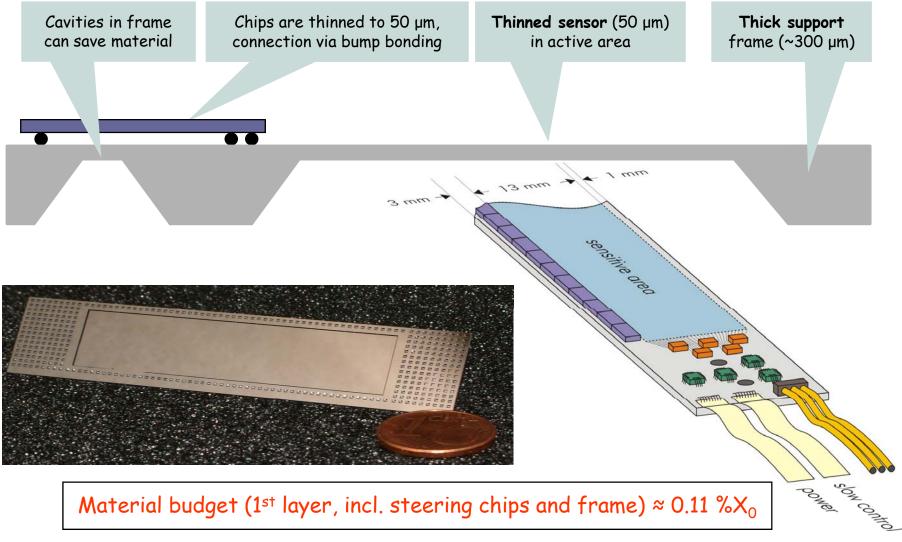
CCD

□ LCFI (UK) – T. Greenshaw, C. Damerell <u>http://hepwww.rl.ac.uk/lcfi/</u>

CMOS

IPHC, M. Winter <u>http://ireswww.in2p3.fr/ires/web2/-CMOS-ILC-.html</u>
 INFN, V. Re et al.

SOI


- □ SUCIMA, M. Caccia
- □ 3D MIT Lincoln Lab <u>http://www.ll.mit.edu</u>

Backup

Loop the loop...

- The machine background is determining the readout speed
 - The readout speed is constraining the geometry modularity
 - □ Was 8 in the Tesla TDR now is 20 considering // col ro and readout every 20 µs in the innermost layer.
- The mechanical structures is framed by the limited material budget.
- The limited material budget requires a light cooling system, i. e. low power consumption.
- The low power consumption means:
 - □ Exploit the low duty cycle
 - □ "Reduce" the leakage current due to radiation damage
 - □ Slow down the readout

DEPFET ladder design

CCD ladder and mechanics

Unsupported silicon

- Longitudinal tensioning provides stiffness
- □ No lateral stability
- □ Not believed to be promising
- Thin substrates
 - □ Detector thinned to epi layer (20 µm)
 - □ Silicon glued to low mass substrate for lateral stability
 - □ Longitudinal stiffness still from tension
- Rigid structures
 - □ No tensioning required

Overcome the NMOS limitation

- The main idea is to take advantage from the Triple Well available in some 130 nm technology.
- A big triple n-well as big as possible is containing a p-well with all the nMOS transistors.
- This deep n-well is acting as a collecting element, while another std and small n-well is used to contain all the pMOS.
- The presence of other n-well is introducing some collection inefficiency proportional to the ratio among the std and the deep n-well surface.
- Since both types of transistor can be used, all possible electronics can be designed as the standard CSA circuit or a complicated sparsification logic.