

Simone Gennai on Behalf of the CMS and ATLAS collaboration

This talk is a mixture of

- □ old (but not complitely out) ...
- □ ...**new** ...
- □ and "near-future" results

Apologies for information not anylonger up to date

CMS and Atlas Trigger systems

- L1 rates
- □ HLT rates
- □ HLT reconstruction
- A concrete example: the Tau trigger

Trigger optimization and HLT exercise (CMS)

Special thanks to Francesca Sarri for pointing me to the relevant documentation

CMS Trigger Architecture

The ATLAS trigger

Execution time Level 1 (hardware): Interaction rate 2µs ~1 GHz **Defines Regions of Interest (Rol).** Bunch crossing **Uses Calo cells and Muon chambers** rate 40 MHz with reduced granularity. LEVEL 1 TRIGGER e/γ , μ , τ , jet candidates. 10ms **High Level Trigger** LEVEL 2 TRIGGER Level 2 (software): ~2 kHz Seeded by LVL1 Rol. Full granularity of the detector Performs calo-track matching 1s

Event Filter (software): Offline-like algorithms. Refines LVL2 decision Full event building

- Run on farm of commercial CPUs: a single processor analyzes one event at a time and comes up with a decision
- Has access to full granularity information
- Freedom to implement sophisticated reconstruction algorithms, complex selection requirements, exclusive triggers...

Constraints:

CPU time (Cost of filter farm) Reject events ASAP: set up internal "logical" selection steps L2: muon+ calorimeter only L3: use full information including tracking

Must be able to measure efficiency from data Use inclusive selction whenever possible Single/double object above pT/ET, etc. Define HLT selection paths from the L1

Keep output rate limited (obvious...)

Setting trigger tables

- HLT trigger paths start from corresponding L1 paths
- Thresholds are set distributing bandwidth to the various paths in order to maximize efficiencies
 - □ There can be significant overlaps
 - □ Iterative process
- Thresholds (and streams) will change with luminosity
 - □ And according to the physics of interest at the time of operation
 - \Box Reference: 2x10³³ cm⁻² s⁻¹ (and Pilot Run)
 - Evolution of selection with luminosity is a delicate issue, up to now studied in detail only for jet (with prescales)
 - □ It will be part of the CMS HLT Exercise

Example ofL1 Trigger Table

For L= 2x10³³ cm⁻²s⁻¹

Selections	Rates (KHz)
MU20	0.8
2MU <mark>6</mark>	0.2
EM25I	12.0
2EM15I	4.0
J200	0.2
3J90	0.2
4J65	0.2
J60+×E60	0.4
TAU25+xE30	2.0
MU10+EM15I	0.1
OTHERS (pre- Scales,calibration)	5.0
TOTAL	~25

Trigger	Level-1 Threshold	Level-1 Rate	Cumulative Level-1 Rate
ingger	(GeV)	(kHz)	(kHz)
Inclusive $e \gamma$	22	4.2 ± 0.1	4.2 ± 0.1
Double $e\gamma$	11	1.1 ± 0.1	5.1 ± 0.1
Inclusive μ	14	2.7 ± 0.1	7.8 ± 0.2
Double μ	3	3.8 ± 0.1	11.4 ± 0.2
Inclusive τ	100	1.9 ± 0.1	13.0 ± 0.2
Double τ	66	1.8 ± 0.1	14.1 ± 0.2
1-,2-,3-,4-jets	150,100,70,50	1.8 ± 0.1	14.8 ± 0.3
$H_{\rm T}$	300	1.2 ± 0.1	15.0 ± 0.3
E_{T}^{miss}	60	0.3 ± 0.1	15.1 ± 0.3
$H_{T} + E_{T}^{miss}$	200, 40	0.7 ± 0.1	15.3 ± 0.3
jet + E_{T}^{miss}	100, 40	0.8 ± 0.1	15.4 ± 0.3
τ + $E_{\mathrm{T}}^{\mathrm{miss}}$	60,40	2.7 ± 0.1	17.4 ± 0.3
$\mu + E_{\mathrm{T}}^{\mathrm{miss}}$	5, 30	0.3 ± 0.1	17.6 ± 0.3
$e \gamma + E_{T}^{miss}$	15, 30	0.7 ± 0.1	17.7 ± 0.3
μ + jet	7,100	0.1 ± 0.1	17.8 ± 0.3
$e\gamma$ + jet	15, 100	0.6 ± 0.1	17.8 ± 0.3
$\mu + \tau$	7,40	1.2 ± 0.1	18.4 ± 0.3
$e \gamma + \tau$	14, 52	5.4 ± 0.2	20.7 ± 0.3
$e \gamma + \mu$	15, 7	0.2 ± 0.1	20.7 ± 0.3
Prescaled			22.6 ± 0.3
	Total Level-1 Rate		22.6 ± 0.3

Assume 50 KHz DAQ available

IFAE 12 Aprile 2007 + factor 3 safety

8

Example of HLT Reconstruction

• γ

- \Box L2: cluster ECAL deposits into "superclusters" and apply E_T threshold
- □ L3: isolation in HCAL and tracker

■ e

- \Box L2 common with γ
- □ L2.5: match the supercluster with a track in the pixel detector
- □ L3: isolation in HCAL and tracker, cut on E/p
- Jets
 - □ Iterative cone algorithm in calorimeters + energy corrections (non-linearity)
- MET
 - □ Vector sum of transverse energy deposit in calorimeters, incl. muons

Muons

- □ L2 muon reconstruction with improved pT resolution
- □ L2.5 calorimeter isolation
- **L3** full information from SiStrip Tracker for further improvement on the pT resolution

B-tagging

- □ L2.5: impact parameter with pixel track stubs
- □ L3: with regional track reconstruction
- Tau
 - □ See next slides in the talk

HLT Trigger Table

Trigger	HLT Threshold	HLT Rate
ingger	(GeV)	(Hz)
Inclusive e	26	23.5 ± 6.7
e- e	12, 12	1.0 ± 0.1
Relaxed e-e	19, 19	1.3 ± 0.1
Inclusive γ	80	3.1 ± 0.2
$\gamma - \gamma$	30, 20	1.6 ± 0.7
Relaxed γ - γ	30, 20	1.2 ± 0.6
Inclusive μ	19	25.8 ± 0.8
Relaxed μ	37	11.9 ± 0.5
μ - μ	7,7	4.8 ± 0.4
Relaxed μ - μ	10, 10	8.6 ± 0.6
$\tau + E_{\mathrm{T}}^{\mathrm{miss}}$	$65 (E_T^{miss})$	0.5 ± 0.1
Pixel τ - τ	—	4.1 ± 1.1
Tracker τ - τ	—	6.0 ± 1.1
$\tau + e$	52, 16	< 1.0
$\tau + \mu$	40, 15	< 1.0
b-jet (leading jet)	350, 150, 55 (see text)	10.3 ± 0.3
<i>b</i> -jet (2 nd leading jet)	350, 150, 55 (see text)	8.7 ± 0.3
Single-jet	400	4.8 ± 0.0
Double-jet	350	3.9 ± 0.0
Triple-jet	195	1.1 ± 0.0
Quadruple-jet	80	8.9 ± 0.2
$E_{\rm T}^{\rm miss}$	91	2.5 ± 0.2

$L= 2x10^{33} \text{ cm}^{-2} \text{s}^{-1} (CMS \text{ Physics TDR v.2})$

1		
jet + E_{T}^{miss}	180, 80	3.2 ± 0.1
acoplanar 2 jets	200, 200	0.2 ± 0.0
acoplanar jet + E_{T}^{miss}	100, 80	0.1 ± 0.0
2 jets + E_{T}^{miss}	155, 80	1.6 ± 0.0
3 jets + E_{T}^{miss}	85, 80	0.9 ± 0.1
4 jets + E_{T}^{miss}	35, 80	1.7 ± 0.2
Diffractive	40, 40	< 1.0
$H_{T} + E_{T}^{miss}$	350, 80	5.6 ± 0.2
$H_{\rm T} + e$	350, 20	0.4 ± 0.1
Inclusive γ	23	0.3 ± 0.0
$\gamma - \gamma$	12, 12	2.5 ± 1.4
Relaxed γ - γ	19, 19	0.1 ± 0.0
Single-jet	250	5.2 ± 0.0
Single-jet	120	1.6 ± 0.0
Single-jet	60	0.4 ± 0.0
		119.3 ± 7.2

120 Hz

HLT Trigger Table

Selection	Physics coverage	2x10 ³³ cm ⁻² s ⁻¹	Rates (Hz)
Electron	Higgs, new gauge bosons, extra dim., SUSY, W/Z, top	e25i, 2e15i	~40
Photon	Higgs, SUSY, extra dim.	g60i, 2g20i	~40
Muon	Higgs, new gauge bosons, extra dim., SUSY, W/Z, top, B-Physics	m20i,2m10 2m6 with m _B /m _{J/y}	~50
Jets	SUSY, compositness, resonances	j400, 3j165, 4j110	~25
Jet & E _T ^{miss}	SUSY, leptoquarks	j70 + xE70	~20
tau & E _T ^{miss}	Extended Higgs models (e.g. MSSM), SUSY	t35 + xE45	~5
Others	pre-scales, calibration,		~20
Total			~200

The rates for the HLT taken considering the EventFilter performances equal to those one of the OFFLINE.

TAU SOURCES AND INTEREST FOR PHYSICS

Standard Model: inclusive W $\rightarrow \tau\tau$ (Z $\rightarrow \tau\tau$) production QCD. SM and MSSM Higgs: 100-150 GeV SM Higgs: qqH($\tau\tau$) A/H $\rightarrow \tau\tau$ H⁺ $\rightarrow \tau\nu$ (m_H⁺ < m_{top} and m_H⁺ > m_{top}) SUSY

Extra Dimensions

A practical example: Tau trigger

Calorimeter

Energy deposited in few cells: narrow jets deposit and more collimated than QCD jets of the same energy

Tracker

Isolation criteria implemented with reconstructed tracks

Trigger rate is saturated by QCD 2jet events

The Tau jet reconstruction is similar to a generic jet reconstruction with the additional use of a tau jet veto: the tau is accepted only if the active towers pattern is made of neighbour towers as shown above, as Tau jets are much more collimated than QCD jets at the same E_T .

The performances have been computed on MSSM Higgs bosons, with a preselection at generator level.

Tau HLT

Tracks can be reconstructed with only the pixel layers or with also some microstrips layers. In the case of pixel only reconstruction, also the Level2 Calo isolation must be applied to get the final rate < 3 Hz.

(In the plot the Isolation Cone is varied from 0.2 to 0.5)

HLT for H⁺-> τv (CMS)

L1 Tau Trigger

as in the TDR

For | η|<2.5

LVL1 trigger:

look at 4X4 matrix of calorimetric towers $(\Delta \eta \Delta \phi = 0.1 \times 0.1 \text{ each trigger tower}).$ E_{T} threshold for the central core (EM+Had) and isolation thresholds between core and 12 external towers for e.m. and had. calorimeters.

LVL2 trigger:

look at the shower shape in the 2nd layer of e.m. calorimeter and at the track multiplicity inside the RoI defined at LVL1. Cut on the ratio between E_{T} contained in a 3x7 cell cluster and E_{T} in a 7x7 cell cluster and on track multiplicity

Tau Trigger

LVL3 (Event Filter) : look at the complete event.

➢number of reconstructed tracks, within DR = 0.3 of the candidate calorimeter cluster, between 1 and 3;

> cut on isolation fraction, defined as the difference between the E_T contained in a cone size of DR=0.2 and 0.1 normalized to the total jet E_T ;

➤cut on EM jet radius, an energy weighted radius calculated only in the e.m. calorimeter;

➤cut on EM energy fraction, defined as the fraction of the total jet energy in the e.m. calorimeter;

> threshold on the p_T of the highest p_T track.

TAU TRIGGER EVOLUTION: ATLAS case For the LVL1 different RoI sizes are under study

(timing, resolution and efficiency,...)

LVL2 : Calorimeter based approach

Under developing an EF tracking based algorithm.

LVL2 : Tracking based approach

The CMS HLT Exercise

The work of the OnSel group till the summer of 2007 ("HLT exercise") consists of:

- Implementing the L1 emulator and the HLT algorithms in CMSSW, and integrating them into consistent trigger paths
- Implementing pilot-run (with an emphasis on early physics, commissioning and monitoring triggers) menus
- □ Measuring the CPU-performance of the HLT

Example:

Trigger optimization and prospects for W $\rightarrow \tau n$ with 100 pb⁻¹ taking at very low luminosity 10³¹-10³² cm⁻²s⁻¹)

(few weeks of data

Timing issue

- Up to the Physics TDR, the trigger performances were evaluated only in terms of Signal efficiency and background rejection
- As the Pilot run is approaching we have to optimize the timing performance.
 - □ 40 msec/Event is the "budget" we can spent at HLT
 - Reduce as soon as possible the bkg
 - Apply faster code than the one used in offline
 - Regional reconstruction and data unpacking becomes an Issue
- Some trigger paths have been partially redesigned in order to speed up the reconstruction and selection

Example of HLT filters

Trigger menu optimization, an example: W-> τv

Extract signal for most abundant source of t-leptons as early as possible. This requires a performant t and E_T^{miss} trigger from the very start!

For L = $2x10^{33}$, baseline plan is to trigger on τ 25I + XE30 at LVL1 (for a rate of about 2 kHz) and to raise the thresholds to τ 35i + xE45 at the HLT (for an output rate of about 5 Hz).

- > Measurment of $W \rightarrow \tau v / W \rightarrow e v$ to confirm good understanding of trigger/reco/identification efficiencies
- E/p measurement in single-prong τ decay for calorimeter calibration.

Assumed that trigger chain is
fully operational and that the
detector operates more or less
as expected (especially in terms
of E_T^{miss} performance).Expected
rates for
100 pb⁻¹Efficiencies of ~ 80% for $\tau 30i + xE35$

Efficiencies of ~ 80% for the t trigger and of ~ 50% for the id/reco of τ hadronic decays were assumed.

Expected rates for 100 pb ⁻¹	$W \rightarrow \tau v, \tau \rightarrow hadron$	$W \rightarrow ev$	$Z \rightarrow \tau \tau$, $1\tau \rightarrow$ hadron
σ. Β (pb)	11200	17300	1500
τ <mark>30i + xE35</mark>	~ 15000	~ 250000	~ 1300
τ 20i + xE25	~ 60000	~ 560000	~ 3500

Conclusions

- **Trigger at LHC is an integral part of the event selection**
- CMS and ATLAS achieves a rejection factor of ~1000 at HLT from the L1 output
- HLT algorithms have the full event data available and no limitation on complexity, except for CPU time
- Inclusive triggers based on the presence on one or more objects above p_T/E_T thresholds are normally sufficient to get good efficiency on most signal
- More sophisticated selections are possible if necessary

The Trigger is not a static issue is always "pending". It will be changed accordingly to the Luminosity and physics indication

References

CMS DAQ/HLT TDR, 2002, CERN-LHCC-2002-026 Full study of HLT rates, timing, benchmark signal efficiencies

- CMS Physics TDR Volume 1 (2006), CERN-LHCC-2006-001
 - Detector performance, reconstruction
- CMS Physics TDR Volume 2 (2006), CERN-LHCC-2006-021,

□ Update of HLT rates and trigger tables (Appendix E)

ATL-COM-DAQ-2003-030

BACKUP SLIDES

EFFECT OF TRIGGER SELECTIONS

E cono EM ico HAD iso

Cumulative Cuts Applied	$Z^{0} \rightarrow \tau^{+} \tau^{-}$ With Pileup (%)	Jet Efficiency With Pileup (%)
L1:20/10/10	25.8±0.3	14.1±0.2
L2:0.9/4	53.5±0.9	15.3±0.6
L3:Number of tracks (1-3)	90.2±1.8	84.3±4.2
L3:Isolation fraction (<0.3)	81.7±1.7	64.8±3.5
L3:EM radius (<0.15)	76.9±1.6	55.0±3.1
L3:EM fraction (>0.6)	65.9±1.4	45.1±2.7
L3:P _T track 1 (>10)	46.5±1.1	17.3±1.5
► L1:30/10/10	9.6±0.2	4.3±0.1
L2:0.9/4	55.7±1.5	15.8±1.0
L3:Number of tracks (1-3)	91.8±2.9	81.8±7.4
L3:Isolation fraction (<0.3)	86.0±2.8	65.7±6.3
L3:EM radius (<0.15)	82.4±2.7	59.5±5.9
L3:EM fraction (>0.6)	70.9±2.4	46.0±4.9
L3:P _T track 1 (>10)	52.0±2.0	19.7±2.9

3 sezioni longitudinali

Key is to achieve the best p_T resolution (and suppress non-prompt muons and b,c decays)

L2,L3 reduce the rate by improving the p_T resolution

L2 is justified as it reduces the rate to allow more time for processing data from the tracker

Some HLT Efficiencies At low luminosity, relative to events in detector acceptance:

$\mathbf{W} \rightarrow \mathbf{e} \mathbf{v}$		68 %
$\mathbf{W} \rightarrow \mu v$		69%
$Z \rightarrow \mu \mu$	92%	
Z→ee		90%
$tt \rightarrow \mu + X$		72 %
Н(115 GeV)→үү		77%
H(150) \rightarrow ZZ \rightarrow 4 μ		98%
H(120) →ZZ→4e		90%
A/H(500 GeV) →2τ		45%
H⁺(200-400) →τ⁺ν		50%

Summary:

 \rightarrow LVL1 and LVL2 selection (calo+tracks) emulated for $W \rightarrow \tau \nu$ analysis

→ With rather soft selection ETmiss > 20 GeV + EMTauRoI > 20 GeV

- estimated for 10³¹:
 - 60 Hz after LVL1
 - 5 Hz after LVL2
- \rightarrow For off-line analysis start with
 - S/B ~ 0.002 ~ 10^5 signal events accepted for 100pb-1 Increasing E_T^{MISS} threshold helps in the background rejection:
- at 60 GeV threshold, supression 10^2-10^3 at 10% efficiency.
- \rightarrow Offline tau selection has to do the final work to extract the signal.

Low luminosity provides unique opportunity to study low energy τ hadronic signatures in ATLAS (in view of SUSY): important possibility to verify the understanding of tauID and E_T^{MISS} reco before attacking "New Physcics".