Fisica elettrodebole a LHC

M. Malberti Università & INFN Milano-Bicocca

- ATLAS e CMS
- Produzione di W e Z:
 - Parton Distribution Functions
 - *Rates* di produzione per W e Z
 - Produzione Drell-Yan
- Misure di precisione: massa del bosone W
- Produzione di coppie di bosoni e TGC

ATLAS e CMS

ATLAS

- sistema tracciante $|\eta| < 2.5$
- calorimetria
 - EM (Lar) , |η| < 3.2
 - adronica , $|\eta| < 4.9$

BARREL ELEMENTS

SUPERCONDUCTING

- campo magnetico: solenoide 2T
 + toroide
- spettrometro per muoni $|\eta|$ < 2.7

RETURN YOKE

VACUUN TANK

CMS

- sistema tracciante, $|\eta| < 2.4$
- calorimetria
 - + EM (PbWO₄) , $|\eta| < 3$
 - + adronica , $|\eta|<5$
- solenoide, campo magnetico 4T
- camere per muoni

Total weight

Magnetic field

Overall diameter : 15.00m Overall length : 21.60m

: 12,500t.

Produzione di W e Z a LHC

Parton Distribution Functions (PDF)

Vincoli alle PDF da eventi di W

Distribuzioni in rapidità di leptoni da W e Z (o rapporti di distribuzioni) sono strumento sensibile alle incertezze delle PDF

Potenziale di ATLAS per vincoli alle PDF

- 10^6 eventi W \rightarrow ev generati con set **PDF CTEQ6.1** + **simulazione completa** del rivelatore **ATLAS**
- fit globale di pdf (ZEUS) includendo le distribuzioni di rapidità dei leptoni ottenute da questi "pseudo-dati"

Misura di *rates* di W e Z

Produzione di coppie di leptoni(Drell-Yan)

- studio della produzione di coppie di leptoni fino a masse invarianti molto elevate
- possibilità di trovare effetti di nuova fisica come risonanze sul continuo Drell-Yan
- incertezze sistematiche dominanti nella stima della sezione d'urto sono teoriche
- per $M(I^+I^-) > 2$ TeV domina l'errore statistico anche per 100 fb⁻¹

$M_{\mu^+\mu^-}$	Cross section	Detector	Statistical	Statistical	Statistical
	fb	smearing	1 fb^{-1}	$10 {\rm ~fb^{-1}}$	$100 {\rm ~fb^{-1}}$
$\geq 200 \text{ GeV}/c^2$	$2.76 \cdot 10^3$	$8 \cdot 10^{-4}$	0.025	0.008	0.0026
\geq 500 GeV/ c^2	$1.07 \cdot 10^{2}$	0.0014	0.11	0.035	0.011
$\geq 1000 \text{ GeV}/c^2$	6.61	0.0049	0.37	0.11	0.037
\geq 2000 GeV/ c^2	$2.4 \cdot 10^{-1}$	0.017		0.56	0.18
\geq 3000 GeV/ c^2	$1.9 \cdot 10^{-2}$	0.029			0.64

M. Malberti

IFAE, Napoli, 11 Aprile 2007

<mark>Misura di A_{FB} e sin²θ</mark>_w

•
$$A_{FB} = b (a - sin^2 \theta_{eff}^{lep}) con A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

collisioni pp sono simmetriche

→ asimmetria rispetto alla direzione del quark dedotta dalla <u>direzione</u> <u>del sistema </u>*l*(

 $(assumendo x(q) > x(\overline{q}))$

- → misura più sensibile ad <u>alte</u> <u>rapidità</u> , $|y(\mathcal{U})| > 1$
- cruciale il controllo degli errori sistematici !!!
 - PDFs
 - accettanza e efficienza di ricostruzione dei leptoni
 - correzioni QCD e elettrodeboli a ordini più alti

precisione attuale: $\delta(\sin^2 \theta^{lep}_{eff}) = 1.6 \times 10^{-4}$

Misura di M_w: motivazioni

$$M_W = \sqrt{\frac{\pi\alpha}{G_F\sqrt{2}}} \cdot \frac{1}{\sin\theta_W\sqrt{1-\Delta r}} - \mathbf{f}(\mathsf{m}_{\mathsf{top}}^2,\mathsf{log}(\mathsf{M}_{\mathsf{H}}))$$

- test del Modello Standard combinata con la misura di precisione di m_{top} e con una misura diretta della massa dell'Higgs
- uguali contributi all'incertezza su $M_{_{\rm H}}$ se $\Delta M_{_W} \sim 0.7 \times 10^{-2} \Delta m_{_{top}}$
- LHC: $\Delta m_{top} < 2 \text{ GeV} \Rightarrow \Delta M_w < 15 \text{ MeV}$

🔶 *constrain* su М_н ~ 30%

• Tevatron + LEP2 : $\Delta M_{W} = 25$ MeV Tevatron Run 2: attesi $\Delta M_{W} \sim 25$ -30MeV con 2 fb⁻¹

Osservabili sensibili a M_w

Studio di decadimenti leptonici $~{\rm W}{\rightarrow}~{\rm lv}$, con ${\it I}=e,\,\mu$

- poco sensibile a p^T(W)
- sensibile a effetti di rivelatore (*missing E^T*)

- minore impatto da effetti di rivelatore
- sensibile a $p^{T}(W)$

Misura di M_w : due diversi approcci

Metodo tradizionale (vedi Tevatron)

- fit dei dati da W data con campioni MC generati per diversi valori di M_w
- richiede una eccellente modellizzazione di
 - fisica
 - rivelatore

- uso di eventi di Z scalati con M_w/M_z come riferimenti
- a Tevatron limitato dalla statistica di Z disponibile, applicabile a LHC!
- le incertezze comuni si cancellano nel rapporto

Metodo tradizionale (ATLAS)

- analisi dello spettro di massa trasversa, decadimenti W→ev
- maggiore sorgente di incertezza strumentale: scala di energia/momento dei leptoni
- controllo di scala e risoluzione con eventi di Z→ee
 - → precisione sulla scala <u>assoluta</u> di massa 5×10^{-5} (con 10 fb⁻¹)

source	∆M _w for 10 fb⁻¹		
of uncertainty	e-channel, M^{T}		
	(MeV)		
Statistics	< 2		
Background	5		
E-p scale	15 (4*)		
E-p resolution	5 (<1*)		
Recoil model	5		
Total instrumental	<20 (<10)		
PDF	< 10		
W width	7		
Radiative decays	< 10		
pT(W)	5		
Total	<25		

hep-ph/0003275 *ATLAS-PUB-2006-007

M. Malberti

Il metodo delle "osservabili scalate" (I)

- l'idea:T.Giele, S.Keller, PR D57 (1998)
- trattare Z come W (ignorando un leptone) e fit di W con eventi di Z scalati con

$$R(X) = \frac{d \sigma^{W} / dX_{W}}{d \sigma^{Z} / dX_{Z}} \qquad X = \frac{M_{V}^{T}}{M_{V}}, \frac{p_{lept}^{T}}{M_{V}}$$

- R(X) dalla teoria + correzioni aggiuntive per selezioni e effetti di rivelatore
- incertezze comuni sperimentali e teoriche ridotte
 - cancellazione delle incertezze dovute all'emissione di gluoni soffici ⇒ il metodo diventa rilevante per una analisi con lo spettro in momento trasverso del leptone

CMS NOTE 2006/061

Il metodo delle "osservabili scalate" (II)

CMS NOTE 2006/061

- precisione statistica:
 - limitata dal numero di Z

errore sperimentale ridotto

- richieste di precisione meno stringenti: es.: 0.25% sulla scala di energia sufficiente per $\Delta M_{_{W}} < 10 \text{ MeV}$
- incertezza da p^T(W) ridotta, ma ancora il fattore limitante per 10 fb⁻¹
 - stima preliminare con DYRAD + studi in corso con MC@NLO
 - R(X) calcolato per diverse scale di fattorizz./rinorm. $\Rightarrow \Delta M_w < 30 \text{ MeV}$
 - può essere ridotto dal calcoli NNLO
- prospettive per 1 fb⁻¹
 40 MeV (stat.) + 40 MeV (det. sist.) +
 20 MeV (PDFs) + errore teorico da p^T(W)

 $\Delta M_{\rm w}$ with 10 fb⁻¹

source	scaled E [™]	
of uncertainty	e-channel	
	M _w (MeV)	
Statistics	15	
Background	2	
Lepton E-p scale	< 10	
E-p resolution	2	
Recoil	< 10	
Total instrumental	< 20	
PDF	< 10	
W width	<10	
pT(W)	<30	

Produzione di coppie di bosoni e TGC (I)

Vertici ΖΖγ e Ζγγ

- accoppiamenti carichi
- 5 parametri (tutti = 0 nel SM):

Deviazioni dal Modello Standard sono segnature di nuova fisica

Produzione di coppie di bosoni e TGC (II)

• potenzialità di osservare produzione di coppie di bosoni già nelle prime fasi (L = 1 fb ⁻¹)

es: produzione di WZ: 97 evt. di segnale, 31 evt. di fondo

• con luminosità più elevate: miglioramento dei limiti sugli accoppiamenti anomali

Conclusioni

- alta statistica di W e Z disponibile a LHC
- eventi di W e Z essenziali nella fase iniziale per
 - comprendere e calibrare i rivelatori
 - adattare i MonteCarlo (v. PDFs)
- misure con W, Z
 - *rates* e sezioni d'urto (totali e differenziali)
 - misure di precisione: M_w

 \rightarrow sfruttare diversi metodi, diversi canali, diverse osservabili per raggiungere il *goal* di 15 MeV (10 fb⁻¹)

- con luminosità integrate maggiori:
 - + $A_{_{FB}}$, $sin^2 \theta^{_{lep}}_{_{eff}}$ (100 fb⁻¹)
 - possibilità di migliorare limiti su TGCs (30 fb⁻¹)