

Andrea Dotti (Università e INFN Pisa) VI IFAE, 11 – 13 April 2007 Napoli

VI IFAE – Top physics at LHC – A. Dotti

Outline

Introduction

- The role of Top quark
- Top quark Production
- Top quark Decay
- Precise Measurements
 - Production cross section
 - Top quark Mass
- Commissioning
 - Mass measurement with first collisions

Top properties

- The top quark completes the three family structure of the SM
- It is massive δM/M <2%</p>
- Spin=1/2, Not directly
- Charge=+2/3, -4/3 excluded @ 94%C.L.(D0)
 - Isospin=+1/2 Not directly
- I→bW ~100%, FCNC: probed at the 10% level
- Large Γ =1.42GeV (m_b,M_w,a_s,EW corr.)
- Short lifetime cτ<52.5μm @95%C.L.(CDF)</p>

$$\tau_{had} = \Lambda_{QCD}^{-1} >> \tau_{decay}$$

"t-quarks are produced and decay as free particles" NO top hadrons

The Role of Top quark at LHC

1. Fundamental for **EW measurements**

- m_t , σ_t , q_t , $|V_{tb}|$, σ_{tt} , BR_t , tt, pdfs
- m_t can greatly help in the indirect constraint of the Standard Model (and new physics !) see next slide

2. Fundamental for new physics search

- both production and decay: $X \rightarrow tt$, $t \rightarrow X$, ttX
- larger couplings with Higgs -new physics?-
- top is background to many search channels

3. Essential for **commissioning**

detector and tools: jet scale, b-tagging calibration

The Role of Top quark at LHC: an example

 Most recent result on top mass (CDF+D0):

 $M_{top} = 170.9 \pm 1.5(syst) \pm 1.1(stat)$

- The top quark mass is close to electroweak scale, it is a probe to constrain SM and BSM
- Example: M_{top} and M_w can be used to constrain Higgs boson mass
- Expected to reduce total error on top mass measurement down to 1 GeV at LHC experiments

Top, W and Higgs masses

$$\rho = \frac{M_W^2}{M_Z^2} (1 - \sin^2 \theta_W) \equiv 1 + \Delta r, \qquad (1)$$

$$\Delta r = \frac{3G_F}{8\pi^2\sqrt{2}} M_{top}^2 + \frac{\sqrt{2}G_F}{16\pi^2} M_W^2 \left[\frac{11}{3} \ln \left(\frac{M_H^2}{M_W^2} \right) + \cdots \right] + \cdots$$
(2)

5

ttbar production at LHC

Single Top Production

- Single top production never observed yet
- Direct measurement for |V_{th}|
- Some properties can be studied in this channel with less ambiguity w.r.t ttbar (polarization, charge)
- New physics: new charged boson will modify SM cross section in s and t channels and their relative importance

The top production at LHC

Top decays

Semi-leptonic decay:

- "Easy" to trigger
- Complete reconstruction of the event
- Selection: high Pt isolated lepton, High MET, 4 jets
- Di-leptonic decay:
 - Very high trigger efficiency
 - High Purity (main bkg is other top decays)
 - Only partial reconstruction of event
- Full hadronic decay:
 - Highest BR
 - Not many trigger possibilities at LHC: multi-jet trigger thresholds too high

Outline

- Introduction
 - The role of Top quark
 - Top quark Production
 - Top quark Decay
- Precise Measurements
 - Production cross section
 - Top quark Mass
- Commissioning
 - Mass measurement with first collisions

Cross section Measurement

 $\Delta\sigma/\sigma$ (1 fb⁻¹)= 1.2%(stat)+14%(syst)+10%(lumi) $\Delta\sigma/\sigma$ (10 fb⁻¹)= 0.4%(stat)+10%(syst)+5%(lumi)

Cross section Measurement: single-top

- Performed independently for the three channels
- Main backgrounds: ttbar, W+jets
- Event jet multiplicity (b and light jets) and event topology are used to select events and distinguish between channels
- S/B=1.3 (t-channel), ranging from 1/7 to 1/3 for other channels
- For 10fb⁻¹:

 $\Delta \sigma / \sigma = 10\% \text{ (t-channel)}$ $\Delta \sigma / \sigma = 36\% \text{ (s-channel)}$ VI IFAE – Tor $\Delta \sigma / \sigma = 19-26\% \text{ (Wt, 1-2 leptoni)}$

Top quark Mass measurement

- Top mass measured in semileptonic channel
- Leptonic branch used to trigger event (isolated high Pt lepton, MET)
- Hadronic top reconstructed from three jet invariant mass
- b-tagging fundamental to remove background (combinatorial and W+jets)
- "In-situ" light jet calibration: constraining jj invariant mass at M_w^{PDG}

Mass measurement: alternative methods

- Example from CMS: measurement from J/Ψ
- Top mass extracted from m(I,J/Ψ)
- BR(t->InJ/ΨX)=5.5x10⁻⁴ ("only" 4500 events with 10fb⁻¹) but completely different systematics from traditional channel (no use of b-tabbing, no JES influence)

sics ∆M = 1.2(stat)+1.5(syst) GeV (L=20 fb⁻¹)

Mass measurement: alternative methods

- Example from ATLAS: high Pt sample
- Standard semi-leptonic selection plus Pt(jjb)>200GeV
- collect all energy around candidate top in a wide cone
- Less sensitive to JES
- Need to subtract UE (measuring it far away from jet activity)

 $\delta m_t (GeV/c^2)$

Initial state radiation	0.1
Final state radiation	0.1
b-quark fragmentation	0.3
UE estimate $(\pm 10\%)$	1.3
mass scale calibration	0.9

Outline

- Introduction
 - The role of Top quark
 - Top quark Production
 - Top quark Decay
- Precise Measurements
 - Production cross section
 - Top quark Mass
- Commissioning
 - Mass measurement with first collisions

Expected performances at day-1

- Can we do top physics with very first data?
- We will have to cope with reduced performance detector
 - Investigate possibility to perform preliminary top mass measurement w/o b-tagging (pessimistic scenario)

Based on detector construction quality, test-beam results, cosmics, simulations

	Expected performance day 1	Physics samples to improve
ECAL uniformity e/γ scale	~ 1% ~ 2 %	Minimum-bias, $Z \rightarrow ee$ $Z \rightarrow ee$
HCAL uniformity Jet scale events	~ 3 % < 10%	Single pions, QCD jets Z (\rightarrow II) +1j, W \rightarrow jj in tt
Tracking alignment	20(100)-200 μm in Rφ?	Generic tracks, isolated μ , Z ${\rightarrow}\mu m$
		ATLAS

Ultimate statistical precision achievable after few weeks of operation. Then face systematics... Example: tracker alignment : 100 μ m (1 month) \rightarrow 20 μ m (4 months) \rightarrow 5 μ m (1 year) ?

Commissioning: top mass measurement

- In most pessimistic scenario b-tagging is absent at start
- Can we then observe the top with few robust selection cuts?

 $\epsilon = 11\%$

 MET
 $P_T > 20 \text{ GeV}$

 1 lepton
 $P_T > 20 \text{ GeV}$

 3 jets(R=0.4)
 $P_T > 40 \text{ GeV}$

 4th jet
 $P_T > 20 \text{ GeV}$

• Assign jets to W-boson and top-quark:

1) Hadronic top:

Three jets with highest vector-sum $\boldsymbol{p}_{\mathsf{T}}$ as the decay products of the top

2) W boson:

Two jets in hadronic top with highest momentum in reconstructed jjj C.M. frame.

Commissioning: top mass measurement

Data sets:

- Signal: MC@NLO
- Background W+4 incl. jets:
 ALPGEN
- M_{top} reconstructed
 Events selected with M_{jj} close to nominal M_w, (within ± 10 GeV)

100 pb⁻¹ is a few days of nominal low-luminosity LHC operation

We can easily see top peak without b-tag requirement

Commissioning: di-lepton channel

- Top reconstructed assuming:
 - no use of b-tagging
 - reduced ECAL acceptance
 - (|η|<1.47 instead of 2.5): 25% less
 ee, 12% less em
- Events selection:
 - 2 isolated high Pt leptons
 - different sign (same sign allowed but with Z veto)
 - 2 jets

Top mass from cinematic fit

Commissioning and JES

- At Day-1 JES is set by:
 - Calorimeters calibrated at e.m. scale (testbeams)
 - Hadronic scale set by MC studies (example: jet weighting techniques), corrections for "detector effects" (cracks, e/h, leakage); need events (W->jj) for final calibration ("in-situ")

Linearity

W→qq

100

"in-situ" calibration:

EM scale

set JES to M_w

ATI AS

|η|<2.5

JES after correcting only for detector effects

VI IFAE – Top physics at LHC

Commissioning and Dead Regions

10⁵ tt events (~ 1.5 days @ L=10³³)

Preselection of events:

- o At least one recontructed e or μ with P_T>20 GeV and |η|<2.5
 o MET>20 GeV
 o At least 4 jets with P_T>40 GeV
 - and $|\eta| < 2.5$, 2 b-tagged
- If the 33 weak HV sectors in EMB die (very pessimistic!), study effects on M_{top}
 - after a crude recalibration:
 - o Displacement of the peak of the mass distribution: -0.2 GeV

 M_{top} (no dead regions) – M_{top} (dead regions)

Conclusions

- At LHC it is possible to study top properties with high precision (systematics and detector knowledge are dominant uncertainties)
- It will be possible to start top physics (with reduced performances) with the very first data: in this phase top will be (mainly) a tool to understand the detector
- Top quark is the calibration signal for complex topologies (it provides tools to understand: JES, b-tagging, MET, lepton ID and trigger performances)

