

Misura di Δm_s , $\Delta \Gamma_s$ e ϕ_s a Tevatron

Simone Pagan Griso University of Padova

IFAE 2007 Napoli, 11 Aprile 2007

B-physics @ Tevatron

Seconda

Primar Verte:

•Hadron colliders are a difficult environment...

- lots of inelastic background (S/N \approx 1/1000)
- ... but have many advantages:
 - large x-section for b production ($\sigma \approx 150 \mu b@2 TeV$)
 - all B hadron species are accessible $(B^{0,+}, B_s, \Lambda_b, \Sigma_b, ...)$
- Key ingredient: High purity triggers!
 - D0: Trigger on single and di-muon channels (semileptonic B decays + di-lepton final states)
 - CDF: Sillicon tracking to trigger displaced vertices (σ_{d0}≈48µm) (all hadronic final states)

Tevatron @ FNAL

0

Day

- > 2 fb⁻¹ to tape! (current analysis ≈ 1 fb⁻¹)
- Luminosity still increasing! (Record inst. lum. $2.9 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$)

CDFII and DO

CDFII

- Proper time resolution: σ_{cτ}≈26μm (fully reconstructed B_s decays)
- P_t res. $\sigma_{Pt}/P_t \approx 0.07\% P_t$ [GeV/c]⁻¹ using Sillicon + Drift chamber $(\Rightarrow \sigma \text{ mass} \approx 15 \text{MeV for J/}\Psi \rightarrow \mu\mu)$

- Muon coverage up to $|\eta| < 2$
- Forward tracking: Sillicon Microstrip Tracker up to $|\eta| < 3$ Central Fiber Tracker up to $|\eta| < 2.5$

- $\geq \Delta m_s \rightarrow \text{oscillation frequency of } B_s \overline{B}_s \text{ system}$
 - CDFII measures dominates
- ▷ ΔΓ_s → lifetime difference on B_s-B
 _s mass eigenstates
 D0: 3 untagged measures approach

 \Rightarrow Observables really sensible to New Physics contributions

Δm_s measurement

 $B_{s,L}$, $B_{s,H}$ mass eigenstates of B_s - \overline{B}_s system

Strong check for SM, but also for new physics:

New Physics[Lenz, Nierste; hep-ph/0612167] (model indip.)

 $M_{12}^{SM} \approx \text{Re}$

 $W \leq$

u, c, t

$$\Delta m_s = m_H - m_L = \Delta m_s^{SM} \cdot \left| \Delta_s \right|$$

 $M_{12} = M_{12}^{SM} \cdot$

- 1. B_s signal (gives flavour at decay)
- 2. Flavour at production
- **3**. Proper time
- 4. Fit for mixed and unmixed distribution

 $\Delta m_s @ CDFII - Samples$

comb. bkg.

3

1.94 1.96 1.98 2.00 π^{\dagger} mass [GeV/c²]

 $\phi \pi^{+}$ - Γ mass [GeV/c²]

- NN kinematical selections
- PID (dE/dx + TOF) for K/ π separation (reject bg)

 $\Delta m_{s} @ CDFII - Proper time$

Sample	<σ(cτ)>
	26µm
Partially reconstructed	29µm
Semileptonic	45µm

p-value = $8 \cdot 10^{-8} > 5 \sigma$

$\Delta m_{s} @ CDFII - Unitarity triangle$ $\frac{|V_{td}|}{|V_{ts}|} = 0.2060 \pm 0.0007(\exp) + 0.0081 + 0.0060$

→ UTFit

[http://utfit.roma1.infn.it/ckm-results/ckm-results.html]

CKMFitter has similar results [http://www.slac.stanford.edu/xorg/ckmfitter/]

- Most precise measure of $|V_{td}|/|V_{ts}|$
- Bigger uncertainty is thoeretical
- SM still compatible with exp.

 $\mathcal{B}_{\mathcal{A}} \rightarrow J/\Psi \Phi - \text{Results}$

Simultaneous fit to mass, decay length and 3 angles with an unbinned maximum likelihood fit

Assuming no CPV in Bs mixing

Allowing for CP violation (ϕ_s free)

		$\Delta\Gamma_{\rm s}[{\rm ps}^{-1}]$	φ _s [rad]	<\alpha > [ps]
	CDF (260pb ⁻¹)	$0.47^{+0.19}_{-0.24}\pm0.01$		$1.40^{\rm +0.15}_{\rm -0.13}\pm0.02$
	 D0 (CP)	$0.12^{+0.08}_{-0.10}\pm0.02$		$1.52 \pm 0.08^{+0.01}_{-0.04}$
	D0 (CPV)	0.17±0.08±0.02	$-0.79 \pm 0.56^{\scriptscriptstyle +0.01}_{\scriptscriptstyle -0.14}$	$1.49 \pm 0.08^{+0.01}_{-0.04}$

SM predictions: [Lenz, Nierste; hep-ph/0612167]

$$\Delta \Gamma_s^{SM} = 0.096 \pm 0.039 \, ps^{-1}$$

$$\phi_s^{SM} = (4.2 \pm 1.4) \cdot 10^{-3}$$

Flavour charge asymmetries [Phys. Rev. D 74, 092001 (2006)] [hep-ex/0701007 (2007)] $A_{SL}^{s,SM} = \frac{\Delta\Gamma_s}{\Delta m_s} \tan \phi_s = (2.06 \pm 0.57) \cdot 10^{-5} \text{ Very sensible to CVP from new physics}$

Two D0 measures on untagged B_s samples

- Both detector and physics contribute to charge asymmetry
- Flip B-field @ 0.1% regulary reduce detector systematics

SM still compatible, but room for new physics!

Conclusions

• Desribed more significant measures for Δm_s , $\Delta \Gamma_s$ and ϕ_s at Tevatron

- SM still compatible with experimental results but...
 - Upcopming new CDF results (1fb⁻¹)
 - Both CDF and D0 already have 2fb⁻¹ to analyze, more to come
 - Preparing for tagged $B_s \rightarrow J/\Psi \Phi$ analysis (both CDF and D0, roughly ≈ 0.3 sensitivity on ϕ_s)
 - Future LHCb measures

(sensitivity of 0.02 on ϕ_s with 2fb⁻¹)

[Peter Vankov, Lake Luise Winter Institute 2007]

will be able to futher check the SM prediction.

BACKUP

The B_-B_ system

Mass eigenstates: $B_{S,L} = p |B_s\rangle \pm q |\overline{B}_s\rangle$ Also CP eigenstates if $|\mathbf{p}| / |\mathbf{q}| = 1$

Many interesting observables in order to explore B_s system properties:

$$\Delta m_s = M_H - M_L \cong 2|M_{12}| \qquad \Delta \Gamma_s = \Gamma_L - \Gamma_H \cong 2|\Gamma_{12}|\cos\phi_s \qquad \phi_s = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)$$

$$A_{fs}^{s} = \operatorname{Im} \frac{\Gamma_{12}}{M_{12}} = \frac{\left|\Gamma_{12}\right|}{\left|M_{12}\right|} \sin \phi_{s} = \frac{\Delta \Gamma_{s}}{\Delta m_{s}} \tan \phi_{s} \stackrel{\exp}{=} \frac{N(B_{s} \to f) - N(\overline{B}_{s} \to \overline{f})}{N(B_{s} \to f) + N(\overline{B}_{s} \to \overline{f})}$$
(with $\overline{B}_{s} \to f$ and $B_{s} \to \overline{f}$ forbidden; \overline{f} is the CP conjugate

NP in B_-B_ system

 Γ_{12} domniated by tree-level $b \rightarrow ccs$ M₁₂ sensible to new physics; model indipendent approach:

$$M_{12} = M_{12}^{SM} \Delta_s = M_{12}^{SM} |\Delta_s| e^{i\phi_s^{\Delta}}$$
 [Lenz, Nierste; hep-ph/0612167]

$$\Rightarrow \Delta m_s \text{ sensible to } |\Delta_s|$$

$$\Rightarrow \Delta \Gamma_s \text{ and } a_{fs}^s \text{ also to } \phi_s^{\Delta}$$

e.g. sensibility of $a_{fs}^s \text{ to } \phi^{\Delta}_s$

$$M_{12} = M_{12}^{SM} |\Delta_s| e^{i\phi_s^{\Delta}}$$

$$\Rightarrow \Delta \Gamma_s \text{ and } a_{fs}^s \text{ also to } \phi_s^{\Delta}$$

$$A = 0.004$$

$$A = 10^{-5}$$

$$A = 10^{-5}$$

$$A = 10^{-5}$$

$$A = 0.004$$

$$A =$$

Tevatron

CDF Expect an integrated luminosity delivered: 3-4 fb⁻¹ for end 2007 4-6 fb⁻¹ for end 2008 6-8 fb⁻¹ for end 2009

Bs mixing - CDF

Systematics

p-value = $8 \cdot 10^{-8} > 5 \sigma$

Systematics	Syst. [ps ⁻¹]
SVX Alignment	0.04
Track Fit Bias	0.05
PV bias from tagging	0.02
All other syst.	< 0.01
ΓΟΤΑL	0.07

Bs mixing – D0

D0 results: (1.2 fb⁻¹)

Bs->Ds e X (Ds->φπ)

Bs->Ds μ X (Ds-> $\phi\pi$, K*K, KsK)

 $\Delta ms > 14.9 ps^{-1} @ 95\% CL$ (expected: 16.5 ps^{-1})

Flavour charge asymmetries - I

Very sensible to new physics. In the B_s system we have two measures:

D0: $B_s \to D_s \mu^{\pm} X \ (\mathcal{L} \approx 1.3 \text{ fb}^{-1})$ [hep-ex/0701007 (2007)] $A_{SL}^{s,unt} = \frac{N(D_s^- \mu^+) - N(D_s^+ \mu^-)}{N(D_s^- \mu^+) + N(D_s^+ \mu^-)}$ $= \frac{1}{2} A_{SL}^s = \frac{1}{2} \frac{\Delta \Gamma_s}{\Delta m_s} \tan \phi_s$

<u>Similar methods</u> Some highlights:

- Both detector and physics contribute to charge asymmetry.
- Flip B-field @ 0.1%: reduce det. syst.
- Divide sample in 8 sub-samples (B polarity, μ charge, η sign)
- Extract all asymmetries (6) from data

Flavour charge asymmetries - II

$$n_q^{\alpha\beta} = \frac{1}{4} N \varepsilon^{\beta} (1 + qA)(1 + q\gamma A_{fb})(1 + \gamma A_{det}) \cdot$$

 $(1+q\beta\gamma A_{ro})(1+q\beta A_{q\beta})(1+\beta\gamma A_{\beta\gamma})$

q= charge of μ β = polarity of B γ = sign of η

	$D_s \mu$	μμ
А	0.0102 ± 0.0081	-0.0005 ± 0.0013
A _{fb}	-0.0046 ± 0.0081	0.0004±0.0005
A _{det}	-0.0051±0.0081	-0.0176±0.0005
A _{ro}	-0.0352 ± 0.0081	-0.0275±0.0005
$A_{\beta\gamma}$	-0.0097 ± 0.0081	-0.0008 ± 0.0005
$A_{q\beta}$	0.0030±0.0081	0.0064±0.0005

From the raw A asymmetry correct for bg contamination

 $A_{SL}^{\mu\mu} = -0.0092 \pm 0.0044(stat.) \pm 0.0032(syst.) \rightarrow \text{ inclusive } \mu\mu \text{ measure}$

 $A_{SL}^{s} = 0.0245 \pm 0.0193(stat.) \pm 0.0035(syst.) \longrightarrow D_{s} \mu$ measure

[D0 Collab., hep-ex/0702030]

 $A_{SL}^{\mu\mu}$ contains effects from both B_s and B_d :

$$A_{SL}^{\mu\mu} = \frac{1}{4} \left(A_{SL}^d + \frac{f_s}{f_d} \frac{Z_s(\Gamma_s, \Delta\Gamma_s, \Delta m_s)}{Z_d(\Gamma_d, \Delta\Gamma_d, \Delta m_d)} A_{SL}^s \right)$$

using measured values of $\Gamma_{s,d}$, $\Delta\Gamma_{s,d}$, $\Delta m_{s,d}$, we have for $A_{SL}{}^s$

$$A_{SL}^s = -0.0064 \pm 0.0101$$

While the B_s-semileptonic measure gives:

 $A_{SL}^{s} = 0.0245 \pm 0.0193(stat.) \pm 0.0035(syst.)$

The two measures are nearly indipendent {(<1% of B_s in $\mu\mu$ sample) ($\approx 10\%$ of $\mu\mu$ in B_s sample) $\Rightarrow A_{SL}^{s} = 0.0001 \pm 0.0090$

To be compared to the SM prediction:

 $A_{SL}^{s,SM} = (2.06 \pm 0.57) \cdot 10^{-5}$

[Lenz, Nierste; hep-ph/0612167]

Transversity

$$\frac{d^{3}\Gamma \rightarrow J/\psi (\rightarrow l^{+}l) \phi (\rightarrow K^{+}K)}{d\cos\theta \ d\cos\psi \ dt} \propto \frac{9}{16\pi} \left[2|A_{0}(0)|^{2} e^{-\Gamma_{L} t} \cos^{2}\psi (1 - \sin^{2}\theta \cos^{2}\phi) + \sin^{2}\psi \left\{ |A_{\parallel}(0)|^{2} e^{-\Gamma_{L} t} (1 - \sin^{2}\theta \sin^{2}\phi) + |A_{\perp}(0)|^{2} e^{-\Gamma_{H} t} \sin^{2}\theta \right\} + \frac{1}{\sqrt{2}} \sin^{2}\psi \left\{ |A_{0}(0)||A_{\perp}(0)| \cos(\delta_{2} \cdot \delta_{1})e^{-\Gamma_{L} t} \sin^{2}\theta \sin^{2}2\phi \right\} + \left\{ \frac{1}{\sqrt{2}} |A_{0}(0)||A_{\perp}(0)| \cos\delta_{2} \sin^{2}\psi \sin^{2}\theta \cos\phi \right\} \frac{1}{2} \left(e^{-\Gamma_{H} t} \cdot e^{-\Gamma_{L} t} \right) \delta\phi \\ + \left\{ \frac{1}{\sqrt{2}} |A_{\parallel}(0)||A_{\perp}(0)| \cos\delta_{1} \sin^{2}\psi \sin^{2}\theta \sin\phi \right\} \frac{1}{2} \left(e^{-\Gamma_{H} t} \cdot e^{-\Gamma_{L} t} \right) \delta\phi \right\} H(\cos\psi) F(\phi) G(\cos\theta)$$