

Analisi generalizzata e scale di Nuova Fisica da transizioni |∆F|=2

Vincenzo Vagnoni

on behalf of the **UT**_{fit} Collaboration http://www.utfit.org

M. Bona, M. Ciuchini, E. Franco, V. Lubicz, G. Martinelli, F. Parodi, M. Pierini, P. Roudeau, C. Schiavi, L. Silvestrini, V. Sordini, A. Stocchi, V. V.

Incontri di Fisica delle Alte Energie 2007

Outline

- Standard Model fit (very briefly)
- Un sassolino nella scarpa: α da B $\rightarrow \pi\pi$
- ♦ NP generalized fit allowing for △F=2 NP transitions
- Effective Hamiltonian for ∆F=2 transitions beyond the SM
- Bounds on Wilson coefficients and NP scales in different NP scenarios
- Comment on perspectives for direct detection of NP at the LHC

Apart from a slight tension due to V_{ub} inclusive with respect to the rest of the fit (very unlikely to be due to New Physics...) the consistency of the SM fit is just spectacular

A debated question: α from $B \rightarrow \pi\pi$

Annoso problema: perché la collaborazione CKMfitter trova una soluzione compatibile con α =0 anche se la violazione di CP in B $\rightarrow \pi^+\pi^-$ è appurata a più di 5 σ , mentre per UTfit la soluzione α =0 è soppressa come atteso dal buon senso e dalla fisica?

Risposta CKMfitter: l'analisi UTfit è fortemente influenzata dai prior, il metodo statistico è inattendibile.

Risposta UTfit: l'analisi CKMfitter non tiene conto di importanti informazioni di fisica nella soluzione del problema, il metodo statistico non è rilevante. Bayes può dormire sonni tranquilli (semmai si fosse turbato...)

α < 2 implicherebbe P > 30, mentre SU(3) dal BR(B_s→K⁺K⁻) implica P ~ 1.
 Una rottura di SU(3) del 3000% è fuori questione. Peraltro, che ne sarebbe di SU(2) in tal caso? La soluzione del problema viene dalla fisica, e non dalla statistica!
 Lavoro a stampa in arrivo...

New Physics generalized fit

The mixing processes being characterized by a single amplitude, they can be parametrized in a general way by means of two parameters

$$C_{B_{q}}e^{2i\phi_{B_{q}}} = \frac{\left\langle B_{q}^{0} \left| H_{eff}^{full} \right| \overline{B}_{q}^{0} \right\rangle}{\left\langle B_{q}^{0} \left| H_{eff}^{SM} \right| \overline{B}_{q}^{0} \right\rangle} \qquad q = d, s$$

 HSM_{eff} includes only SM box diagrams while H^{full}_{eff} includes New Physics contributions as well

Four "independent" observables

- C_{Bd} , ϕ_{Bd} , C_{Bs} , ϕ_{Bs}
- $C_{Bq}=1$, $\phi_{Bq}=0$ in SM

For the neutral kaon mixing case, it is convenient to use the following two parameters

$$C_{\varepsilon_{K}} = \frac{\operatorname{Im}\left\langle K^{0} \left| H_{eff}^{full} \right| \overline{K}^{0} \right\rangle}{\operatorname{Im}\left\langle K^{0} \left| H_{eff}^{SM} \right| \overline{K}^{0} \right\rangle} \qquad C_{\Delta m_{K}} = \frac{\operatorname{Re}\left\langle K^{0} \left| H_{eff}^{full} \right| \overline{K}^{0} \right\rangle}{\operatorname{Re}\left\langle K^{0} \left| H_{eff}^{SM} \right| \overline{K}^{0} \right\rangle}$$

Summer 2006

The CKM fit determines $\rho,\eta,$ C_Bq, $\phi_{\text{Bq}},$ C_ $\epsilon\text{K}} and C_{\Delta\text{mK}}$ simultaneously

*to be conservative a long-distance contribution between zero and the experimental Δm_K is added to $C_{\Delta mK}$

Information on the moduli

0.001

B_d sector $\Delta m_d = (0.507 \pm 0.005) \text{ ps}^{-1}$

Probability density UTfit C_{Bd}=1.24±0.43 $\Delta m_s = (17.77 \pm 0.10 \pm 0.07) \text{ ps}^{-1}$ 0 0 2

K⁰ sector

B_s sector

Information on the B_s mixing phase

Recent measurements from the Tevatron opened the box of the ${\rm B}_{\rm s}$ mixing phase

 $a_{CH}^{dimuon} = (-9.2 \pm 4.4 \pm 3.2) \times 10^{-3}$ measured by D0 $\Delta \Gamma_s = (0.47^{+0.19}_{-0.24} \pm 0.01)$ ps⁻¹ measured by CDF $A_{SL}^s = (24.5 \pm 19.3 \pm 3.5) \times 10^{-3}$ measured by D0

and in addition the time-dependent (untagged) angular analysis of the $B_s \rightarrow J/\psi \phi$ decay by D0, yielding a 3-dimensional measurement of $\Delta \Gamma_s$, Γ_s and ϕ_{Bs}

4-fold ambiguity $(\phi_{Bs}, \cos \delta_{1,2}) \leftrightarrow (-\phi_{Bs}, -\cos \delta_{1,2}), (\phi_{Bs}, \Delta \Gamma_s) \leftrightarrow (\pi + \phi_{Bs}, -\Delta \Gamma_s)$

For extreme precision measurements of ϕ_{s} we have to wait LHCb in a couple of years

B_d mixing: φ_{Bd}= (-4±2)°

B_d mixing phase very well contrained but still ample room for a large B_s phase

B_s mixing: φ_{Bs}=(-75±14)° U (-19±11)° U (9±10)° U (102±16)°

Effective Hamiltonian for ∆F=2 transitions beyond the SM

Most general form of the effective Hamiltonian for Δ F=2 processes

$$\mathcal{H}_{\text{eff}}^{K-\bar{K}} = \sum_{i=1}^{5} C_i Q_i^{sd} + \sum_{i=1}^{3} \tilde{C}_i \tilde{Q}_i^{sd}$$
$$\mathcal{H}_{\text{eff}}^{B_q - \bar{B}_q} = \sum_{i=1}^{5} C_i Q_i^{bq} + \sum_{i=1}^{3} \tilde{C}_i \tilde{Q}_i^{bq}$$

The Wilson coefficients C_i have in general the form

$$C_i(\Lambda) = F_i rac{L_i}{\Lambda^2}$$

- F_i: function of the NP flavour couplings
- L_i: loop factor (in NP models with no tree-level FCNC)
- A: NP scale (typical mass of new particles mediating Δ F=2 transitions)

Putting bounds on the Wilson coefficients give insights into the NP scale, in different NP scenarios which enter through F_i and L_i

Different NP scenarios

The connection between Ci(Λ) and the NP scale Λ depends on the specific NP model under consideration

Assuming that new particles interact strongly and/or enter at tree-level we can set L_i~1, thus $\Lambda = \sqrt{F_i / C_i}$

Let's make four relevant cases:

- Minimal Flavour Violation with one Higgs or two Higgs doublets with small or moderate tanβ
 - $F_1 = F_{SM}$, $F_{i\neq 1} = 0$, where F_{SM} are CKM matrix elements in the top-quark mediated SM mixing amplitudes
- Minimal Flavour Violation at large tanβ
 - Additional contribution in B_q mixing by C₄ which differentiates B-meson mixing from Kaon mixing
- Next-to-Minimal Flavour Violation
 - |Fi| = F_{SM} with arbitrary phases
- Arbitrary flavour structure, i.e. no CKM suppression in NP transitions
 - |Fi| ~ 1

Other interesting cases are from loop-mediated NP processes, and L_i would be proportional to α_s^2 and α_w^2

 Λ is reduced by a factor ~0.1 and ~0.03 respectively

Allowed ranges for Wilson coefficients: an example

Upper and lower bounds on $|C_i(\Lambda)|$ and Λ for NMFV models

Leave the (complex) C_i coefficients as free parameters to be determined by the fit

New Physics scales (lower bounds) Perspectives for detection at LHC

	strong/tree	α_s loop α_W loop
MFV (small $\tan \beta$)	$5.5 { m TeV}$	$0.5~{\rm TeV}~0.2~{\rm TeV}$
MFV (large $\tan \beta$)	$5.1 { m ~TeV}$	$0.5~{\rm TeV}~0.2~{\rm TeV}$
NMFV	$12 { m TeV}$	$1.2 { m TeV} 0.4 { m TeV}$
General	$2600~{\rm TeV}$	$260~{\rm TeV}~90~{\rm TeV}$

The direct detection of NP in case of an arbitrary flavour structure is clearly far beyond the reach of LHC, even in case of loop suppression

For MFV models, $\alpha_{\rm s}$ (or $\alpha_{\rm W}$) loop-suppression is needed for a detection at LHC

In case of NMFV, $\alpha_{\!s}$ loop-suppression might not be sufficient, $\alpha_{\!W}$ would be needed

Any model with strongly interacting NP and/or treelevel contributions is beyond the reach of the LHC, while weakly-interacting NP models can be accessible at the LHC provided that they enjoy at least a NMFV-like suppression of $\Delta F = 2$ processes

In the worst scenario, direct detection of NP at LHC might not happen

Low energy measurements could remain the only way to probe the frontiers of HEP for a while

Actually a strong physics case for the forthcoming LHCb and for the (hopefully not so far) SBF

The End